Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(6): e9678, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38356090

RESUMEN

RATIONALE: SLAP is one of the two calibration materials for the isotopic water scale. By consensus the established δ18 O value is -55.5‰, although several expert laboratories measure significantly more negative δ18 OSLAP values. The real δ18 OSLAP value as such does not influence the isotopic water scale; however, knowledge of the size of isotopic scale contraction in stable isotope measurements is vital for second-order isotopes. This study describes the quantification of δ18 OSLAP with respect to δ18 OVSMOW . METHODS: SLAP-like water was quantitatively mixed with highly 18 O-enriched water to mimic VSMOW. The 18 O concentration was determined using an electron ionization quadrupole mass spectrometer. The isotopic composition of the SLAP-like and VSMOW-like waters was measured using an optical spectrometer, alongside original VSMOW and SLAP. RESULTS: This study resulted in a much more negative δ18 O value for SLAP than expected. The averaged outcome of seven independent experiments is δ18 OSLAP  = -56.33 ± 0.03‰. There is a large discrepancy between the actual isotopic measurements of even the most carefully operating isotope laboratories and the true δ18 O value. CONCLUSIONS: Although this finding as such does not influence the use of the VSMOW-SLAP scale, it raises the intriguing question of what we actually measure with our instruments and why even a fully corrected measurement can be so far off. Our result has consequences for issues like the transfer of δ18 O from and to the VPDB scale, various fractionation factors, and Δ17 O. The absolute 18 O abundance for SLAP was calculated as (1887.98 ± 0.43) × 10-6 based on the absolute 18 O abundance of VSMOW and the presented δ18 OSLAP in this paper.

2.
Rapid Commun Mass Spectrom ; 38(16): e9773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872591

RESUMEN

RATIONALE: The isotope ratio for the internationally agreed but virtual zero-point of the carbon isotope-delta scale, Vienna Peedee belemnite (VPDB), plays a critical role in linking carbon isotope delta values to the SI. It is also a quantity used for various data processing procedures including '17O correction', clumped isotope analysis and conversion of carbon isotope delta values into other expressions of isotopic composition. A value for RVPDB(13C/12C) with small uncertainty is therefore desirable to facilitate these procedures. METHODS: The value of RVPDB(13C/12C) was determined by errors-in-variables regression of isotope delta values traceable to VPDB measured by isotope ratio mass spectrometry against isotope ratios traceable to the SI by use of gravimetric mixtures of 12C- and 13C-enriched d-glucose measured by multicollector inductively coupled plasma mass spectrometry. RESULTS: A value of RVPDB(13C/12C) = 0.0111105 ± 0.0000042 (expanded uncertainty, k = 2) was obtained. CONCLUSIONS: The new value for RVPDB(13C/12C) agrees very well with the consensus values calculated from previous measurement results proposed by Kaiser and by ourselves, as well as recent determinations independent of mass spectrometry. The expanded uncertainty of 0.4‰ when expressed as an isotope delta value is a tenfold improvement over the previous best measurement of the isotopic composition of carbon.

3.
Rapid Commun Mass Spectrom ; 36(15): e8864, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32558968

RESUMEN

The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the "Guide to the Expression of Uncertainty in Measurement" (GUM), the majority of standard atomic-weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar °(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar °(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the "±" symbol, for example, Ar °(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar °(E) ± its uncertainty almost all of the time.


Asunto(s)
Consenso , Incertidumbre
4.
Rapid Commun Mass Spectrom ; 35(4): e9006, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33201519

RESUMEN

RATIONALE: The stable carbon isotopic (δ13 C) reference material (RM) LSVEC Li2 CO3 has been found to be unsuitable for δ13 C standardization work because its δ13 C value increases with exposure to atmospheric CO2 . A new CaCO3 RM, USGS44, has been prepared to alleviate this situation. METHODS: USGS44 was prepared from 8 kg of Merck high-purity CaCO3 . Two sets of δ13 C values of USGS44 were determined. The first set of values was determined by online combustion, continuous-flow (CF) isotope-ratio mass spectrometry (IRMS) of NBS 19 CaCO3 (δ13 CVPDB = +1.95 milliurey (mUr) exactly, where mUr = 0.001 = 1‰), and LSVEC Li2 CO3 (δ13 CVPDB = -46.6 mUr exactly), and normalized to the two-anchor δ13 CVPDB-LSVEC isotope-delta scale. The second set of values was obtained by dual-inlet (DI)-IRMS of CO2 evolved by reaction of H3 PO4 with carbonates, corrected for cross contamination, and normalized to the single-anchor δ13 CVPDB scale. RESULTS: USGS44 is stable and isotopically homogeneous to within 0.02 mUr in 100-µg amounts. It has a δ13 CVPDB-LSVEC value of -42.21 ± 0.05 mUr. Single-anchor δ13 CVPDB values of -42.08 ± 0.01 and -41.99 ± 0.02 mUr were determined by DI-IRMS with corrections for cross contamination. CONCLUSIONS: The new high-purity, well-homogenized calcium carbonate isotopic reference material USGS44 is stable and has a δ13 CVPDB-LSVEC value of -42.21 ± 0.05 mUr for both EA/IRMS and DI-IRMS measurements. As a carbonate relatively depleted in 13 C, it is intended for daily use as a secondary isotopic reference material to normalize stable carbon isotope delta measurements to the δ13 CVPDB-LSVEC scale. It is useful in quantifying drift with time, determining mass-dependent isotopic fractionation (linearity correction), and adjusting isotope-ratio-scale contraction. Due to its fine grain size (smaller than 63 µm), it is not suitable as a δ18 O reference material. A δ13 CVPDB-LSVEC value of -29.99 ± 0.05 mUr was determined for NBS 22 oil.

5.
Proc Natl Acad Sci U S A ; 114(39): 10361-10366, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893986

RESUMEN

A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Cambio Climático , Plantas/metabolismo , Agua/metabolismo , Ciclo del Carbono/fisiología , Isótopos de Carbono/análisis , Combustibles Fósiles/análisis , Fotosíntesis/fisiología
6.
J Exp Biol ; 222(Pt 14)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31278130

RESUMEN

Reproduction is energetically expensive and to obtain sufficient energy, animals can either alter their metabolic system over time to increase energy intake (increased-intake hypothesis) or reallocate energy from maintenance processes (compensation hypothesis). The first hypothesis predicts a positive relationship between basal metabolic rate (BMR) and energy expenditure (DEE) because of the higher energy demands of the metabolic system at rest. The second hypothesis predicts a trade-off between different body functions, with a reduction of the BMR as a way to compensate for increased daytime energetic expenditure. We experimentally manipulated the workload of wild pied flycatchers by adding or removing chicks when chicks were 2 and 11 days old. We then measured the feeding frequency (FF), DEE and BMR at day 11, allowing us to assess both short- and long-term effects of increased workload. The manipulation at day 2 caused an increase in FF when broods were enlarged, but no response in DEE or BMR, while the manipulation at day 11 caused an increase in FF, no change in DEE and a decrease in BMR in birds with more chicks. Our results suggest that pied flycatchers adjust their workload but that this does not lead to a higher BMR at night (no support for the increased-intake hypothesis). In the short term, we found that birds reallocate energy with a consequent reduction of BMR (evidence for the compensation hypothesis). Birds thus resort to short-term strategies to increase energy expenditure, which could explain why energy expenditure and hard work are not always correlated in birds.


Asunto(s)
Ingestión de Energía , Metabolismo Energético , Reproducción/fisiología , Pájaros Cantores/fisiología , Animales , Metabolismo Basal , Femenino , Masculino
7.
Nature ; 477(7366): 579-82, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21956330

RESUMEN

The stable isotope ratios of atmospheric CO(2) ((18)O/(16)O and (13)C/(12)C) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way. Interpreting the (18)O/(16)O variability has proved difficult, however, because oxygen isotopes in CO(2) are influenced by both the carbon cycle and the water cycle. Previous attention focused on the decreasing (18)O/(16)O ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration; a global increase in C(4) crops at the expense of C(3) forests; and environmental conditions, such as atmospheric turbulence and solar radiation, that affect CO(2) exchange between leaves and the atmosphere. Here we present 30 years' worth of data on (18)O/(16)O in CO(2) from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Niño/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Niño increases the (18)O/(16)O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO(2) by biosphere-atmosphere gas exchange. We show how the decay time of the El Niño anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Niño events, implying a shorter cycling time of CO(2) with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year, may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO(2). Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/química , El Niño Oscilación del Sur , Isótopos de Oxígeno/análisis , Ciclo del Carbono/fisiología , Productos Agrícolas/metabolismo , Humedad , Lluvia , Suelo/análisis , Suelo/química , Árboles/metabolismo , Agua/metabolismo
8.
Anal Chem ; 88(8): 4294-302, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26974360

RESUMEN

An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

9.
Rapid Commun Mass Spectrom ; 30(1): 143-50, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26661981

RESUMEN

RATIONALE: The doubly labelled water (DLW) method is a stable isotopic technique for measuring total energy expenditure (TEE). Saliva is the easiest sampling fluid for assessing isotopic enrichments, but blood is considered superior because of its rapid exchange with body water. Therefore, we compared a large range of isotopic enrichments in saliva and blood, and related TEE in subjects with their ad libitum total energy intake (TEI). The relevance of these parameters to body weight and fat change over an 8-day interval was also assessed. METHODS: Thirty subjects underwent DLW analysis over either 8 or 14 days, during which time initial and final blood and saliva enrichments were compared. TEI was assessed by dieticians over the 8-day period only. Isotope ratio mass spectrometry was used for the measurement of δ(2)H and δ(18)O values. RESULTS: No discrepancies were observed between sampling fluids over a wide range of enrichments. During the 8-day period, average TEI exceeded TEE by ~5% or less. Using saliva as sampling fluid, TEI and TEI-TEE, but not TEE, were positively correlated to body weight change. TEI-TEE and physical activity EE (AEE), but not TEI, correlated, respectively, positively and negatively to changes in fat mass. CONCLUSIONS: The DLW method in humans can be reliably applied using saliva as sampling fluid. TEI-TEE as well as AEE contributes significantly to changes in fat mass over an 8-day period.


Asunto(s)
Óxido de Deuterio/análisis , Metabolismo Energético/fisiología , Saliva/química , Adulto , Deuterio/análisis , Humanos , Masculino , Espectrometría de Masas , Isótopos de Oxígeno/análisis
10.
Anal Chem ; 87(17): 9025-32, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26252648

RESUMEN

IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

11.
Anal Chem ; 87(10): 5198-205, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25874646

RESUMEN

The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ(2)H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ(2)H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ(2)H values, will benefit from the availability of suitably (2)H-enriched reference waters, extending the VSMOW-SLAP scale above zero.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromo/química , Hidrógeno/química , Compuestos Orgánicos/química , Temperatura , Calibración , Difusión , Halógenos/química , Isótopos
12.
Food Chem ; 448: 139081, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537551

RESUMEN

Port is a famous sort of fortified wine, exclusively produced in the Douro region of Portugal. Among the various types of Port wines, the Tawny types with stated maturation ages of 10 or 20 years are among the higher quality and more expensive ones. Fraudulently producing those with a shorter maturation time than claimed, along with additions or treatments to mask this, would make production of those wines cheaper. Here, we present a method, based on Radiocarbon (14C) age determination of the ethanol and the sugar residue, to verify the maturation time of such Port wines. We successfully verified the method using single harvest year "Vintage" Port wines. We then analyzed a total of twenty 10- and 20-year-old Tawny Port wines, bought at various retail stores in the Netherlands. We found that seven of those had a significantly shorter maturation age than claimed on the label.

13.
Am J Physiol Endocrinol Metab ; 305(3): E317-24, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23715730

RESUMEN

The doubly labeled water (DLW) technique is used to assess metabolic rate (MR) in free-living conditions. We investigated whether differences in the nutritional and body adiposity status affect validity of the assessment of CO2 production (rCO2) by the DLW technique. To serve this purpose, we compared calculated rCO2 by the DLW method to actual CO2 production concomitantly measured in an indirect calorimetry setup over a 3-day period in mice fed with a low-fat (LF) diet or an obesogenic high-fat/high-sucrose (HF) diet. To uncover a potential effect of body composition on DLW accuracy, the HF-fed group was further subdivided in a diet-induced obesity-prone (DIO) and diet-induced obesity-resistant (DR) group. Furthermore, we assessed the influence of different sampling protocols, duration, and methodology of calculation. An excellent match was found between rCO2 assessed by the two methods in the LF-fed mice (least discrepancy -0.5 ± 1.1%). In contrast, there was a consistent overestimation of rCO2 by the DLW technique in the HF-fed animals compared with actual CO2 production independent from body mass gain (least discrepancy DR +15.9 ± 2.2%, DIO +18.5 ± 3.2%). The least discrepancies were found when two-pool model equations and the intercept method were used to calculate the body water pool. Furthermore, the HF group presented different equilibration kinetics of (2)H and (18)O and a lower dilution space ratio between the two. We recommend particular caution when using the DLW method for MR assessment in HF-fed animals and potentially humans because of the overestimation of rCO2.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dióxido de Carbono/metabolismo , Marcaje Isotópico/métodos , Agua , Algoritmos , Animales , Composición Corporal , Calibración , Calorimetría Indirecta , Deuterio , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos ICR , Estado Nutricional , Obesidad/metabolismo , Isótopos de Oxígeno , Técnica de Dilución de Radioisótopos , Reproducibilidad de los Resultados
14.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1433-40, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24089382

RESUMEN

Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available to the offspring. To investigate these interactions, we assessed several components of behavioral energetics during lactation in control mice (C) and in mice of two lines selectively bred for high wheel-running activity (S1, S2) subjected to a HFS diet or a low-fat (LF) diet. Energy intake, litter growth, and milk energy output at peak lactation (MEO; assessed by subtracting maternal metabolic rate from energy intake) were elevated in HFS-feeding dams across all lines compared with the LF condition, an effect that was particularly evident in the S dams. This effect was not preceded by improved lactation behaviors assessed between postnatal days 1 and 7 (PND 1-7). In fact, S1 dams had less high-quality nursing, and S2 dams showed poorer pup retrieval than C dams during PND 1-7, and S dams had generally higher levels of physical activity at peak lactation. These data demonstrate that HFS feeding increases MEO underlying increased litter and pup growth, particularly in mice with a trait for increased behavioral physical activity.


Asunto(s)
Grasas de la Dieta/farmacología , Sacarosa en la Dieta/farmacología , Metabolismo Energético/efectos de los fármacos , Lactancia/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Carrera/fisiología , Animales , Cruzamiento , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Femenino , Lactancia/fisiología , Conducta Materna/fisiología , Ratones , Modelos Animales
15.
Isotopes Environ Health Stud ; 59(3): 309-326, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37470465

RESUMEN

It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.


Asunto(s)
Dióxido de Carbono , Agua , Isótopos de Oxígeno/análisis , Humedad , Isótopos de Carbono/análisis , Oxígeno
16.
Front Nutr ; 10: 1255499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810925

RESUMEN

Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland-Altman plots, paired difference tests, and Pearson's correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = -329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = -543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p < 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).

17.
Oecologia ; 168(3): 631-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21935666

RESUMEN

In many bird populations, variation in the timing of reproduction exists but it is not obvious how this variation is maintained as timing has substantial fitness consequences. Daily energy expenditure (DEE) during the egg laying period increases with decreasing temperatures and thus perhaps only females that can produce eggs at low energetic cost will lay early in the season, at low temperatures. We tested whether late laying females have a higher daily energy expenditure during egg laying than early laying females in 43 great tits (Parus major), by comparing on the same day the DEE of early females late in their laying sequence with DEE of late females early in their egg laying sequence. We also validated the assumption that there are no within female differences in DEE within the egg laying sequence. We found a negative effect of temperature and a positive effect of female body mass on DEE but no evidence for differences in DEE between early and late laying females. However, costs incurred during egg laying may have carry-over effects later in the breeding cycle and if such carry-over effects differ for early and late laying females this could contribute to the maintenance of phenotypic variation in laying dates.


Asunto(s)
Metabolismo Energético , Oviposición/fisiología , Passeriformes/fisiología , Reproducción/fisiología , Animales , Cruzamiento , Femenino , Passeriformes/metabolismo , Conducta Sexual Animal , Factores de Tiempo
18.
Sci Rep ; 12(1): 6351, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428795

RESUMEN

The doubly labelled water (DLW) method is widely used to determine energy expenditure. In this work, we demonstrate the addition of the third stable isotope, 17O, to turn it into triply labelled water (TLW), using the three isotopes measurement of optical spectrometry. We performed TLW (2H, 18O and17O) measurements for the analysis of the CO2 production (rCO2) of mice on different diets for the first time. Triply highly enriched water was injected into mice, and the isotope enrichments of the distilled blood samples of one initial and two finals were measured by an off-axis integrated cavity output spectroscopy instrument. We evaluated the impact of different calculation protocols and the values of evaporative water loss fraction. We found that the dilution space and turnover rates of 17O and 18O were equal for the same mice group, and that values of rCO2 calculated based on 18O-2H, or on 17O-2H agreed very well. This increases the reliability and redundancy of the measurements and it lowers the uncertainty in the calculated rCO2 to 3% when taking the average of two DLW methods. However, the TLW method overestimated the rCO2 compared to the indirect calorimetry measurements that we also performed, much more for the mice on a high-fat diet than for low-fat. We hypothesize an extra loss or exchange mechanism with a high fractionation for 2H to explain this difference.


Asunto(s)
Dióxido de Carbono , Agua , Animales , Deuterio/análisis , Metabolismo Energético , Ratones , Isótopos de Oxígeno/análisis , Reproducibilidad de los Resultados
19.
Sci Total Environ ; 810: 151284, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740647

RESUMEN

Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual 14C-13C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of 13C source signatures, which are seldom measured for EC. In this work, we present 13C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for 13C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the 13C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the 13C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in 13C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of 13C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, 13C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of 13C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
20.
Sci Total Environ ; 804: 150031, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34509852

RESUMEN

We describe and thoroughly evaluate a method for 13C analysis in different fractions of carbonaceous aerosols, especially elemental carbon (EC). This method combines a Sunset thermal-optical analyzer and an isotope ratio mass spectrometer (IRMS) via a custom-built automated separation, purification, and injection system. Organic carbon (OC), EC, and other specific fractions from aerosol filter samples can be separated and analyzed automatically for 13C based on thermal-optical protocols (EUSAAR_2 in this study) at sub-µgC levels. The main challenges in isolating EC for 13C analysis are the possible artifacts during OC/EC separation, including the premature loss of EC and the formation of pyrolyzed OC (pOC) that is difficult to separate from EC. Since those artifacts can be accompanied with isotope fractionation, their influence on the stable isotopic composition of EC was comprehensively investigated with various test compounds. The results show that the thermal-optical method is relatively successful in OC/EC separation for 13C analysis. The method was further tested on real aerosols samples. For biomass-burning source samples, (partial) inclusion of pOC into EC has negligible influence on the 13C signature of EC. However, for ambient samples, the influence of pOC on the 13C signature of EC can be significant, if it is not well separated from EC, which is true for many current methods for measuring 13C on EC. A case study in Xi'an, China, where pOC is enriched in 13C compared to EC, shows that this can lead to an overestimate of coal and an underestimate of traffic emissions in isotope-based source apportionment.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda