Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cancer ; 14: 121, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26081429

RESUMEN

BACKGROUND: Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs. METHODS: PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures. RESULTS: Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 µM and 10 µM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs. CONCLUSION: Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.


Asunto(s)
Glioblastoma/metabolismo , Glioblastoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Indolizinas/farmacología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Inhibidores de Proteínas Quinasas/farmacología , Quinoxalinas/farmacología , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Esferoides Celulares , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Cancer Immunol Immunother ; 62(9): 1499-509, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817721

RESUMEN

BACKGROUND: The growth and recurrence of several cancers appear to be driven by a population of cancer stem cells (CSCs). Glioblastoma, the most common primary brain tumor, is invariably fatal, with a median survival of approximately 1 year. Although experimental data have suggested the importance of CSCs, few data exist regarding the potential relevance and importance of these cells in a clinical setting. METHODS: We here present the first seven patients treated with a dendritic cell (DC)-based vaccine targeting CSCs in a solid tumor. Brain tumor biopsies were dissociated into single-cell suspensions, and autologous CSCs were expanded in vitro as tumorspheres. From these, CSC-mRNA was amplified and transfected into monocyte-derived autologous DCs. The DCs were aliquoted to 9-18 vaccines containing 10(7) cells each. These vaccines were injected intradermally at specified intervals after the patients had received a standard 6-week course of post-operative radio-chemotherapy. The study was registered with the ClinicalTrials.gov identifier NCT00846456. RESULTS: Autologous CSC cultures were established from ten out of eleven tumors. High-quality RNA was isolated, and mRNA was amplified in all cases. Seven patients were able to be weaned from corticosteroids to receive DC immunotherapy. An immune response induced by vaccination was identified in all seven patients. No patients developed adverse autoimmune events or other side effects. Compared to matched controls, progression-free survival was 2.9 times longer in vaccinated patients (median 694 vs. 236 days, p = 0.0018, log-rank test). CONCLUSION: These findings suggest that vaccination against glioblastoma stem cells is safe, well-tolerated, and may prolong progression-free survival.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Células Madre Neoplásicas/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Vacunas contra el Cáncer/inmunología , Terapia Combinada , Células Dendríticas/patología , Supervivencia sin Enfermedad , Femenino , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/patología , ARN Mensajero/genética , Telomerasa/genética , Telomerasa/inmunología , Transfección
3.
Mar Biotechnol (NY) ; 5(3): 253-60, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14502397

RESUMEN

The major histocompatibility complex class II (MHCII) has a central role in the immune response of vertebrates with its function of presenting antigenic peptides to the T-cell receptors. We have isolated the promoters and intron 1 of MHCIIalpha and MHCIIbeta genes of Atlantic salmon. To isolate these promoters, we constructed an Atlantic salmon ( Salmo salar) promoter finder kit (analogous to the commercially available "human promoter finder kit"). By nucleotide sequence alignment of known MHCII promoter regions, we identified the 3 conserved regulatory X, X2, and Y boxes in the salmon promoters. The W box was not found. In contrast, a salmon-specific putative W box was identified. Both of the isolated Atlantic salmon MHCIIalpha and beta promoters (included in patent applications by Genomar A/S, Oslo, Norway) were found to be functional since they both gave positive yellow fluorescence protein signal when inserted as promoters in the pEYFP-1 reporter plasmid and transfected into the salmon head kidney cell line (SHK-1).


Asunto(s)
Genes MHC Clase II/genética , Regiones Promotoras Genéticas/genética , Salmo salar/genética , Animales , Proteínas Bacterianas , Secuencia de Bases , Cartilla de ADN/genética , Proteínas Luminiscentes , Microscopía Fluorescente , Datos de Secuencia Molecular , Alineación de Secuencia , Transfección
4.
J Biol Chem ; 283(16): 10601-10, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18165681

RESUMEN

G protein-coupled receptor kinase-2 and -3 (GRK2 and GRK3) in cardiac myocytes catalyze phosphorylation and desensitization of different G protein-coupled receptors through specificity controlled by their carboxyl-terminal pleckstrin homology domain. Although GRK2 has been extensively investigated, the function of cardiac GRK3 remains unknown. Thus, in this study cardiac function of GRK3 was investigated in transgenic (Tg) mice with cardiac-restricted expression of a competitive inhibitor of GRK3, i.e. the carboxyl-terminal plasma membrane targeting domain of GRK3 (GRK3ct). Cardiac myocytes from Tg-GRK3ct mice displayed significantly enhanced agonist-stimulated alpha(1)-adrenergic receptor-mediated activation of ERK1/2 versus cardiac myocytes from nontransgenic littermate control (NLC) mice consistent with inhibition of GRK3. Tg-GRK3ct mice did not display alterations of cardiac mass or left ventricular dimensions compared with NLC mice. Tail-cuff plethysmography of 3- and 9-month-old mice revealed elevated systolic blood pressure in Tg-GRK3ct mice versus control mice (3-month-old mice, 136.8 +/- 3.6 versus 118.3 +/- 4.7 mm Hg, p < 0.001), an observation confirmed by radiotelemetric recording of blood pressure of conscious, unrestrained mice. Simultaneous recording of left ventricular pressure and volume in vivo by miniaturized conductance micromanometry revealed increased systolic performance with significantly higher stroke volume and stroke work in Tg-GRK3ct mice than in NLC mice. This phenotype was corroborated in electrically paced ex vivo perfused working hearts. However, analysis of left ventricular function ex vivo as a function of increasing filling pressure disclosed significantly reduced (dP/dt)(min) and prolonged time constant of relaxation (tau) in Tg-GRK3ct hearts at elevated supraphysiological filling pressure compared with control hearts. Thus, inhibition of GRK3 apparently reduces tolerance to elevation of preload. In conclusion, inhibition of cardiac GRK3 causes hypertension because of hyperkinetic myocardium and increased cardiac output relying at least partially on cardiac myocyte alpha(1)-adrenergic receptor hyper-responsiveness. The reduced tolerance to elevation of preload may cause impaired ability to withstand pathophysiological mechanisms of heart failure.


Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Regulación de la Expresión Génica , Contracción Miocárdica , Receptores Adrenérgicos alfa 1/metabolismo , Animales , Presión Sanguínea , Células Cultivadas , Quinasa 3 del Receptor Acoplado a Proteína-G/metabolismo , Ventrículos Cardíacos/patología , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Miocardio/metabolismo , Fenotipo , Pletismografía , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda