Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2315264121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551837

RESUMEN

Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes but also measure values of membrane potentials. This study discloses a fluorescent indicator which can address both. We describe the synthesis of a sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials (APs) with greater signal-to-noise than state-of-the-art BeRST 1 (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of APs in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.


Asunto(s)
Colorantes Fluorescentes , Potenciales de la Membrana , Potenciales de Acción , Membrana Celular , Microscopía Fluorescente/métodos
2.
Nat Chem Biol ; 20(1): 83-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857992

RESUMEN

The inner mitochondrial membrane (IMM) generates power to drive cell function, and its dynamics control mitochondrial health and cellular homeostasis. Here, we describe the cell-permeant, lipid-like small molecule MAO-N3 and use it to assemble high-density environmentally sensitive (HIDE) probes that selectively label and image the IMM in live cells and multiple cell states. MAO-N3 pairs with strain-promoted azide-alkyne click chemistry-reactive fluorophores to support HIDE imaging using confocal, structured illumination, single-molecule localization and stimulated emission depletion microscopy, all with significantly improved resistance to photobleaching. These probes generate images with excellent spatial and temporal resolution, require no genetic manipulations, are non-toxic in model cell lines and primary cardiomyocytes (even under conditions that amplify the effects of mitochondrial toxins) and can visualize mitochondrial dynamics for 12.5 h. This probe will enable comprehensive studies of IMM dynamics with high temporal and spatial resolution.


Asunto(s)
Colorantes Fluorescentes , Membranas Mitocondriales , Humanos , Células HeLa , Microscopía Fluorescente/métodos , Lípidos , Monoaminooxidasa
3.
J Neurosci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777598

RESUMEN

Magnetogenetics was developed to remotely control genetically targeted neurons. A variant of magnetogenetics uses magnetic fields to activate transient receptor potential vanilloid (TRPV) channels when coupled with ferritin. Stimulation with static or radiofrequency (RF) magnetic fields of neurons expressing these channels induces Ca2+ transients and modulates behavior. However, the validity of ferritin-based magnetogenetics has been questioned due to controversies surrounding the underlying mechanisms and deficits in reproducibility. Here, we validated the magnetogenetic approach FeRIC using electrophysiological and imaging techniques. Previously, interference from RF stimulation rendered patch-clamp recordings inaccessible for magnetogenetics. We solved this limitation for FeRIC, and we studied the bioelectrical properties of neurons expressing TRPV4 (non-selective cation channel) and TMEM16A (chloride permeable channel) coupled to ferritin (FeRIC channels) under RF stimulation. We used cultured neurons obtained from rat hippocampus of either sex. We show that RF decreases the membrane resistance and depolarizes the membrane potential in neurons expressing TRPV4FeRIC RF does not directly trigger action potential firing but increases the neuronal basal spiking frequency. In neurons expressing TMEM16AFeRIC, RF decreases the membrane resistance, hyperpolarizes the membrane potential, and decreases the spiking frequency. Additionally, we corroborated the previously described biochemical mechanism responsible for RF-induced activation of ferritin-coupled ion channels. We solved an enduring problem for ferritin-based magnetogenetics, obtaining direct electrophysiological evidence of RF-induced activation of ferritin-coupled ion channels. We found that RF does not yield instantaneous changes in neuronal membrane potentials. Instead, RF produces responses that are long-lasting and moderate, but effective in controlling the bioelectrical properties of neurons.Significance statement Cell-specific and non-invasive stimulation can be a powerful tool for modulating neuronal circuits and functions. Magnetogenetic techniques that are fully genetically encoded provide such tools. However, there have been significant controversies surrounding the efficacy and underlying mechanisms of magnetogenetics. Here, we demonstrate that by employing a fully genetically encoded magnetogenetic approach called FeRIC, we can modulate neuronal voltage, inducing either depolarization or hyperpolarization through the activation of ion channels with magnetic fields; we validate this modulation mechanism with the gold-standard patch-clamp technique. We further discover that this neuronal modulation is not achieved by instantaneously triggering action potentials as previously assumed, but by modulating neuronal excitability.

4.
Proc Natl Acad Sci U S A ; 119(45): e2211142119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322771

RESUMEN

Ultradian rhythms in metabolism and physiology have been described previously in mammals. However, the underlying mechanisms for these rhythms are still elusive. Here, we report the discovery of temperature-sensitive ultradian rhythms in mammalian fibroblasts that are independent of both the cell cycle and the circadian clock. The period in each culture is stable over time but varies in different cultures (ranging from 3 to 24 h). We show that transient, single-cell metabolic pulses are synchronized into stable ultradian rhythms across contacting cells in culture by gap junction-mediated coupling. Coordinated rhythms are also apparent for other metabolic and physiological measures, including plasma membrane potential (Δψp), intracellular glutamine, α-ketoglutarate, intracellular adenosine triphosphate (ATP), cytosolic pH, and intracellular calcium. Moreover, these ultradian rhythms require extracellular glutamine, several different ion channels, and the suppression of mitochondrial ATP synthase by α-ketoglutarate, which provides a key feedback mechanism. We hypothesize that cellular coupling and metabolic feedback can be used by cells to balance energy demands for survival.


Asunto(s)
Relojes Circadianos , Ritmo Ultradiano , Animales , Ácidos Cetoglutáricos , Glutamina , Ciclo Celular , Ritmo Circadiano/fisiología , Mamíferos
5.
Bioorg Med Chem Lett ; 109: 129842, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844174

RESUMEN

Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity. We have been exploring self-healing fluorophores that use triplet state quenchers (TSQs) as a means to reduce the already low phototoxicity of VoltageFluor dyes developed in our lab. We previously showed that conjugation of the TSQ cyclooctatetraene (COT) to a fluorescein based VoltageFluor dye substantially reduced phototoxicity. Here, we show that this approach can be applied to far-red Silicon rhodamine dyes. COT-conjugated Si-rhodamines show improved photostability and reduced phototoxicity in hiPSC-CMs compared to the unmodified dye. This enables imaging of hiPSC-CMs for up to 30 min with continuous illumination. We show that this effect is mediated by a combination of reduced singlet oxygen production and lower loading in the cellular membrane. We discuss future applications and avenues of improvement for TSQ-stabilized VoltageFluor dyes.


Asunto(s)
Colorantes Fluorescentes , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Rodaminas , Miocitos Cardíacos/efectos de los fármacos , Humanos , Rodaminas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Células Madre Pluripotentes Inducidas/citología , Silicio/química , Estructura Molecular
6.
Biophys J ; 121(13): 2624-2637, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35619563

RESUMEN

Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Membrana Celular/metabolismo , Electricidad , Membrana Dobles de Lípidos/química , Potenciales de la Membrana
7.
J Biol Chem ; 296: 100302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465376

RESUMEN

3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 µM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert-Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype ("L-type") of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP's mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1-10 µM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1-1 mM) antagonist activity. We also showed that 1.5-µM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-µM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-µM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.


Asunto(s)
Amifampridina/farmacología , Fármacos Neuromusculares/farmacología , Unión Neuromuscular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Terminales Presinápticos/efectos de los fármacos , Canales de Potasio Shaw/metabolismo , Acetilcolina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica , Masculino , Ratones , Microelectrodos , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Rana pipiens , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/genética , Técnicas de Cultivo de Tejidos
8.
J Am Chem Soc ; 144(29): 13050-13054, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35834763

RESUMEN

Fluorescence microscopy with fluorescent reporters that respond to environmental cues is a powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to changes in the biological environment. PeT-based indicators rely on PeT either into the excited state (acceptor PeT) or out of the excited state (donor PeT). Our group has been developing voltage-sensitive fluorophores (VF dyes) that respond to changes in biological membrane potential (Vm). We hypothesize that the mechanism of voltage sensitivity arises from acceptor PeT (a-PeT) from an electron-rich aniline-containing molecular wire into the excited-state fluorophore, resulting in decreased fluorescence at negative Vm. In this work, we reversed the direction of electron flow to access donor-excited PeT (d-PeT) VF dyes by introducing electron-withdrawing rather than electron-rich molecular wires. VF dyes containing electron-withdrawing groups show voltage-sensitive fluorescence, but with the opposite polarity: hyperpolarizing Vm now gives fluorescence increases. We used a combination of computation and experiment to design and synthesize five d-PeT VF targets, two of which are voltage-sensitive.


Asunto(s)
Colorantes Fluorescentes , Transporte de Electrón , Colorantes Fluorescentes/química , Ionóforos , Potenciales de la Membrana , Microscopía Fluorescente
9.
J Am Chem Soc ; 144(27): 12138-12146, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35776693

RESUMEN

Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (Ligation Unquenched for Activation and Redistribution Rhodamine-based Voltage Reporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca2+ imaging to validate the electroneutrality of Ca2+ release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo , Ionóforos/metabolismo , Lisosomas/metabolismo , Potenciales de la Membrana , Orgánulos/metabolismo , Rodaminas/metabolismo
10.
Nat Methods ; 16(8): 778-786, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31363222

RESUMEN

Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.


Asunto(s)
Corteza Cerebral/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Tomografía/métodos , Animales , Calcio/metabolismo , Corteza Cerebral/citología , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Fotones , Ratas
12.
J Neurosci ; 40(18): 3504-3516, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32265260

RESUMEN

The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ.SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies.


Asunto(s)
Potenciales de Acción/fisiología , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Predicción , Masculino , Unión Neuromuscular/efectos de los fármacos , Técnicas de Cultivo de Órganos , Rana pipiens , Bloqueadores de los Canales de Sodio/farmacología , Factores de Tiempo
13.
Biochemistry ; 60(46): 3547-3554, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34251789

RESUMEN

In 1980, Roger Tsien published a paper, in this journal [Tsien, R. Y. (1980) Biochemistry, 19 (11), 2396], titled "New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures". These new buffers included 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or BAPTA, which is still widely used today. And so, the world was set alight with new ways in which to visualize Ca2+. The ability to watch fluctuations in intracellular Ca2+ revolutionized the life sciences, although the fluorescent indicators used today, particularly in neurobiology, no longer rely exclusively on BAPTA but on genetically encoded fluorescent Ca2+ indicators. In this Perspective, we reflect on the origins of Ca2+ imaging with a special focus on the contributions made by Roger Tsien, from the early concept of selective Ca2+ binding described in Biochemistry to optical Ca2+ indicators based on chemically synthesized fluorophores to genetically encoded fluorescent Ca2+ indicators.


Asunto(s)
Calcio/metabolismo , Colorantes Fluorescentes/química , Microscopía Intravital/métodos , Imagen Óptica/métodos , Calcio/química , Ácido Egtácico/análogos & derivados , Ácido Egtácico/química , Historia del Siglo XX , Microscopía Intravital/historia , Imagen Óptica/historia
14.
J Am Chem Soc ; 143(16): 6194-6201, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33797899

RESUMEN

Xanthene fluorophores, like fluorescein, have been versatile molecules across diverse fields of chemistry and life sciences. Despite the ubiquity of 3-carboxy and 3-sulfonofluorescein for the last 150 years, to date, no reports of 3-phosphonofluorescein exist. Here, we report the synthesis, spectroscopic characterization, and applications of 3-phosphonofluoresceins. The absorption and emission of 3-phosphonofluoresceins remain relatively unaltered from the parent 3-carboxyfluorescein. 3-Phosphonofluoresceins show enhanced water solubility compared to 3-carboxyfluorescein and persist in an open, visible light-absorbing state even at low pH and in low dielectric media while 3-carboxyfluoresceins tend to lactonize. In contrast, the spirocyclization tendency of 3-phosphonofluoresceins can be modulated by esterification of the phosphonic acid. The bis-acetoxymethyl ester of 3-phosphonofluorescein readily enters living cells, showing excellent accumulation (>6x) and retention (>11x), resulting in a nearly 70-fold improvement in cellular brightness compared to 3-carboxyfluorescein. In a complementary fashion, the free acid form of 3-phosphonofluorescein does not cross cellular membranes, making it ideally suited for incorporation into a voltage-sensing scaffold. We develop a new synthetic route to functionalized 3-phosphonofluoresceins to enable the synthesis of phosphono-voltage sensitive fluorophores, or phosVF2.1.Cl. Phosphono-VF2.1.Cl shows excellent membrane localization, cellular brightness, and voltage sensitivity (26% ΔF/F per 100 mV), rivaling that of sulfono-based VF dyes. In summary, we develop the first synthesis of 3-phosphonofluoresceins, characterize the spectroscopic properties of this new class of xanthene dyes, and utilize these insights to show the utility of 3-phosphonofluoresceins in intracellular imaging and membrane potential sensing.


Asunto(s)
Fluoresceína/química , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Ciclización , Fluoresceína/síntesis química , Fluoresceína/metabolismo , Fluoresceínas/química , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Fluorescencia
15.
J Am Chem Soc ; 143(31): 11903-11907, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323478

RESUMEN

Fluorescent voltage indicators are an attractive alternative for studying the electrical activity of excitable cells; however, the development of indicators that are both highly sensitive and low in toxicity over long-term experiments remains a challenge. Previously, we reported a fluorene-based voltage-sensitive fluorophore that exhibits much lower phototoxicity than previous voltage indicators in cardiomyocyte monolayers, but suffers from low sensitivity to membrane potential changes. Here, we report that the addition of a single vinyl spacer in the fluorene molecular wire scaffold improves the voltage sensitivity 1.5- to 3.5-fold over fluorene-based voltage probes. Furthermore, we demonstrate the improved ability of the new vinyl-fluorene VoltageFluors to monitor action potential kinetics in both mammalian neurons and human-induced pluripotent stem cell-derived cardiomyocytes. Addition of the vinyl spacer between the aniline donor and fluorene monomer results in indicators that are significantly less phototoxic in cardiomyocyte monolayers. These results demonstrate how structural modification to the voltage sensing domain have a large effect on improving the overall properties of molecular wire-based voltage indicators.


Asunto(s)
Fluorenos/farmacología , Colorantes Fluorescentes/farmacología , Miocitos Cardíacos/efectos de los fármacos , Neuronas/efectos de los fármacos , Compuestos de Vinilo/farmacología , Fluorenos/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Estructura Molecular , Procesos Fotoquímicos , Compuestos de Vinilo/química
16.
J Am Chem Soc ; 143(11): 4095-4099, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710896

RESUMEN

Mitochondria are the site of aerobic respiration, producing ATP via oxidative phosphorylation as protons flow down their electrochemical gradient through ATP synthase. This negative membrane potential across the inner mitochondrial membrane (ΔΨm) represents a fundamental biophysical parameter central to cellular life. Traditional, electrode-based methods for recording membrane potential are impossible to implement on mitochondria within intact cells. Fluorescent ΔΨm indicators based on cationic, lipophilic dyes are a common alternative, but these indicators are complicated by concentration-dependent artifacts and the requirement to maintain dye in the extracellular solution to visualize reversible ΔΨm dynamics. Here, we report the first example of a fluorescent ΔΨm reporter that does not rely on ΔΨm-dependent accumulation. We redirected the localization of a photoinduced electron transfer (PeT)-based indicator, Rhodamine Voltage Reporter (RhoVR), to mitochondria by masking the carboxylate of RhoVR 1 as an acetoxymethyl (AM) ester. Once within mitochondria, esterases remove the AM ester, trapping RhoVR inside of the mitochondrial matrix, where it can incorporate within the inner membrane and reversibly report on changes in ΔΨm. We show that this Small molecule, Permeable, Internally Redistributing for Inner membrane Targeting Rhodamine Voltage Reporter, or SPIRIT RhoVR, localizes to mitochondria across a number of different cell lines and responds reversibly to changes in ΔΨm induced by exceptionally low concentrations of the uncoupler FCCP without the need for exogenous pools of dye (unlike traditional, accumulation-based rhodamine esters). SPIRIT RhoVR is compatible with multi-color imaging, enabling simultaneous, real-time observation of cytosolic Ca2+, plasma membrane potential, and reversible ΔΨm dynamics.


Asunto(s)
Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Rodaminas/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Mitocondrias/química , Estructura Molecular , Rodaminas/química
17.
J Am Chem Soc ; 143(5): 2304-2314, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33501825

RESUMEN

The development of fluorescent dyes that emit and absorb light at wavelengths greater than 700 nm and that respond to biochemical and biophysical events in living systems remains an outstanding challenge for noninvasive optical imaging. Here, we report the design, synthesis, and application of near-infrared (NIR)-absorbing and -emitting optical voltmeter based on a sulfonated, phosphine-oxide (po) rhodamine for voltage imaging in intact retinas. We find that po-rhodamine based voltage reporters, or poRhoVRs, display NIR excitation and emission profiles at greater than 700 nm, show a range of voltage sensitivities (13 to 43% ΔF/F per 100 mV in HEK cells), and can be combined with existing optical sensors, like Ca2+-sensitive fluorescent proteins (GCaMP), and actuators, like light-activated opsins ChannelRhodopsin-2 (ChR2). Simultaneous voltage and Ca2+ imaging reveals differences in activity dynamics in rat hippocampal neurons, and pairing poRhoVR with blue-light based ChR2 affords all-optical electrophysiology. In ex vivo retinas isolated from a mouse model of retinal degeneration, poRhoVR, together with GCaMP-based Ca2+ imaging and traditional multielectrode array (MEA) recording, can provide a comprehensive physiological activity profile of neuronal activity, revealing differences in voltage and Ca2+ dynamics within hyperactive networks of the mouse retina. Taken together, these experiments establish that poRhoVR will open new horizons in optical interrogation of cellular and neuronal physiology in intact systems.


Asunto(s)
Rayos Infrarrojos , Imagen Óptica , Óxidos/química , Fosfinas/química , Rodaminas/química , Animales , Calcio/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/diagnóstico por imagen , Retina/metabolismo
18.
Acc Chem Res ; 53(1): 11-19, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31834772

RESUMEN

Membrane potential is a fundamental biophysical property maintained by every cell on earth. In specialized cells like neurons, rapid changes in membrane potential drive the release of chemical neurotransmitters. Coordinated, rapid changes in neuronal membrane potential across large numbers of interconnected neurons form the basis for all of human cognition, sensory perception, and memory. Despite the importance of this highly orchestrated and distributed activity, the traditional method for recording membrane potential is through the use of highly invasive single-cell electrodes that offer only a small glimpse of the total activity within a system. Fluorescent dyes that change their optical properties in response to changes in biological voltage have the potential to provide a powerful complement to traditional electrode-based methods of inquiry. Voltage-sensitive fluorescent indicators would allow the direct observation of membrane potential changes, significantly expanding our ability to monitor membrane potential dynamics in living systems. Toward this end, we have initiated a program to design, synthesize, and apply voltage-sensitive fluorophores that report on membrane potential dynamics with high sensitivity and speed. The basis for this optical voltage sensing is membrane potential-dependent photoinduced electron transfer (PeT). Voltage-sensitive fluorophores, or VoltageFluors, possess a fluorophore, a conjugated molecular wire, and an aniline donor. At resting potentials, in which the cell has a hyperpolarized or negative potential relative to the outside of the cell, PeT from the aniline donor is enhanced and fluorescence is diminished. At depolarized potentials, the membrane potential decreases the rate of PeT, allowing an increase in fluorescence. We show that a number of different fluorophores, molecular wires, and aniline donors can be employed to generate fast and sensitive VoltageFluor dyes. Multiple lines of evidence point to a PeT-based mechanism for voltage sensing, delivering fast response kinetics (∼25 ns), good sensitivity (>60% ΔF/F), compatibility with two-photon illumination, excellent signal-to-noise, and the ability to detect neuronal and cardiac action potentials in single trials. In this Account, we provide an overview of the challenges facing the design of fluorescent voltage indicators. We trace the development of molecular wire-based fluorescent voltage indicators within our group, beginning from fluorescein-based VoltageFluor to long-wavelength indicators that use modern fluorophores like silicon rhodamine and carbofluorescein. We examine design principles for PeT-based voltage indicators, showcase the use of our recent indicators for two-photon voltage imaging in intact brains, and explore the development of hybrid indicators that can localize to genetically defined cells. Finally, we highlight outstanding challenges to and opportunities for voltage imaging.


Asunto(s)
Colorantes Fluorescentes/química , Animales , Colorantes Fluorescentes/metabolismo , Humanos , Potenciales de la Membrana , Estructura Molecular
19.
J Am Chem Soc ; 142(1): 614-622, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31829585

RESUMEN

Voltage-sensitive fluorophores enable the direct visualization of membrane potential changes in living systems. To pair the speed and sensitivity of chemically synthesized fluorescent indicators with cell-type specific genetic methods, we here develop Rhodamine-based Voltage Reporters (RhoVR) that can be covalently tethered to genetically encoded, self-labeling enzymes. These chemical-genetic hybrids feature a photoinduced electron transfer triggered RhoVR voltage-sensitive indicator coupled to a chloroalkane HaloTag ligand through a long, water-soluble polyethylene glycol linker (RhoVR-Halo). When applied to cells, RhoVR-Halo dyes selectively and covalently bind to surface-expressed HaloTag enzyme on genetically modified cells. RhoVR-Halo dyes maintain high voltage sensitivities-up to 34% ΔF/F per 100 mV-and fast response times typical of untargeted RhoVRs, while gaining the selectivity of genetically encodable voltage indicators. We show that RhoVR-Halos can record action potentials in single trials from cultured rat hippocampal neurons and can be used in concert with green-fluorescent Ca2+ indicators like GCaMP to provide simultaneous voltage and Ca2+ imaging. In a brain slice, RhoVR-Halos provide exquisite labeling of defined cells and can be imaged using epifluorescence, confocal, or two-photon microscopy. Using high-speed epifluorescence microscopy, RhoVR-Halos provide a read-out of action potentials from labeled cortical neurons in a rat brain slice, without the need for trial averaging. These results demonstrate the potential of hybrid chemical-genetic voltage indicators to combine the optical performance of small-molecule chromophores with the inherent selectivity of genetically encodable systems, permitting imaging modalities inaccessible to either technique individually.


Asunto(s)
Encéfalo/diagnóstico por imagen , Rodaminas/química , Potenciales de Acción , Animales , Encéfalo/fisiología , Humanos , Ratas
20.
J Am Chem Soc ; 142(35): 14993-15003, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32815370

RESUMEN

Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.


Asunto(s)
Complejos de Coordinación/química , Cobre/análisis , Colorantes Fluorescentes/química , Imidazoles/química , Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/síntesis química , Células HEK293 , Humanos , Estructura Molecular , Imagen Óptica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda