Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
2.
Nature ; 557(7705): 418-423, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743673

RESUMEN

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.


Asunto(s)
Evolución Molecular , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B/virología , Filogenia , África , Animales , Asia , Europa (Continente) , Genotipo , Virus de la Hepatitis B/clasificación , Historia Antigua , Historia Medieval , Hominidae/virología , Migración Humana/historia , Humanos , Recombinación Genética
3.
Proc Natl Acad Sci U S A ; 114(5): 881-884, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28100493

RESUMEN

Radiocarbon content in tree rings can be an excellent proxy of the past incoming cosmic ray intensities to Earth. Although such past cosmic ray variations have been studied by measurements of 14C contents in tree rings with ≥10-y time resolution for the Holocene, there are few annual 14C data. There is a little understanding about annual 14C variations in the past, with the exception of a few periods including the AD 774-775 14C excursion where annual measurements have been performed. Here, we report the result of 14C measurements using the bristlecone pine tree rings for the period from 5490 BC to 5411 BC with 1- to 2-y resolution, and a finding of an extraordinarily large 14C increase (20‰) from 5481 BC to 5471 BC (the 5480 BC event). The 14C increase rate of this event is much larger than that of the normal grand solar minima. We propose the possible causes of this event are an unknown phase of grand solar minimum, or a combination of successive solar proton events and a normal grand solar minimum.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda