Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nutr Neurosci ; 27(1): 55-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36625400

RESUMEN

SCOPE: Obesity and insulin resistance constitute risk factors for the development of tauopathies and other neurodegenerative diseases. (Poly)phenol compounds are under study for its role in protecting effects against neural injuries and degeneration. Here, we investigated the effect of Amazonian açai pulp (AP) intake in the prevention of memory and cognitive impairment resulting from a high-fat diet intake in mice. METHODS AND RESULTS: Obesity and insulin resistance was induced with a high-fat diet and supplemented with 2% AP to investigate peripheral insulin resistance, recognition memory and tau protein stability via AKT/GSK3-ß signaling pathway. The consumption of AP for 70 days improved peripheral insulin sensitivity and phosphorylation of AKT/GSK3-ß in mice hippocampi. The animals fed high-fat diets supplemented with AP showed better performance in the novel object recognition test (NOR) in comparison to the H group. Catalase activity and reduced glutathione (GSH) values were improved in the treated mice. CONCLUSIONS: These results suggest that the supplementation of AP can attenuate the effects of high-fat diet consumption in peripheral insulin resistance and improve cognitive behavior.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Ratones Obesos , Proteínas Proto-Oncogénicas c-akt , Glucógeno Sintasa Quinasa 3/farmacología , Cognición , Obesidad/metabolismo , Insulina/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL
2.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091344

RESUMEN

The impact of polyphenols in ovarian cancer is widely studied observing gene expression, epigenetic alterations, and molecular mechanisms based on new 'omics' technologies. Therefore, the combination of omics technologies with the use of phenolic compounds may represent a promising approach to precision nutrition in cancer. This article provides an updated review involving the current applications of high-throughput technologies in ovarian cancer, the role of dietary polyphenols and their mechanistic effects in ovarian cancer, and the current status and challenges of precision nutrition and their relationship with big data. High-throughput technologies in different omics science can provide relevant information from different facets for identifying biomarkers for diagnosis, prognosis, and selection of specific therapies for personalized treatment. Furthermore, the field of omics sciences can provide a better understanding of the role of polyphenols and their function as signaling molecules in the prevention and treatment of ovarian cancer. Although we observed an increase in the number of investigations, there are several approaches to data acquisition, analysis, and integration that still need to be improved, and the standardization of these practices still needs to be implemented in clinical trials.

3.
Chirality ; 34(6): 887-893, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420719

RESUMEN

Limonene-1,2-diol is a limonene oxygenated metabolite that possesses eight different stereoisomers, which could result in different biological properties. Nonetheless, the relation between its spatial configuration and biological function is still little explored. The present study aimed to perform the stereoisomers identification using nuclear magnetic resonance (NMR) investigation of the limonene-1,2-diol produced via R-(+)- and S-(-)-limonene biotransformation by Colletotrichum nymphaeae and S-(-)-limonene biotransformation by Fusarium oxysporum 152B. Besides, in vitro antiproliferative activity was evaluated against human tumor and nontumor cell lines. The NMR analysis showed that R-(+)-limonene biotransformation afforded exclusively (+)-(1S,2S,4R-limonene-1,2-diol), whereas S-(-)-limonene biotransformation afforded exclusively (-)-(1R,2R,4S-limonene-1,2-diol) independent on the fungi used. Despite no significant cytostatic effects, a possible influence of stereogenic center on the antiproliferative activity of these limonene biotransformation products was evidenced. Moreover, the lack of in vitro antiproliferative effect of limonene-1,2-diol against nontumor cells suggested a safe dose range for further in vivo evaluations, including food applications.


Asunto(s)
Limoneno , Biotransformación , Humanos , Limoneno/farmacología , Estereoisomerismo
4.
Trends Food Sci Technol ; 122: 104-109, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35039714

RESUMEN

BACKGROUND: Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. SCOPE AND APPROACH: The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. KEY FINDINGS AND CONCLUSIONS: Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.

5.
Trends Food Sci Technol ; 116: 1195-1199, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34092920

RESUMEN

BACKGROUND: The COVID-19 crisis generated changes in consumer behavior related to food purchase and the management of food packaging. Due to the intensification of online purchases for home delivery, there has been an increase in the use of food packaging (mostly non-biodegradable or non-renewable). Moreover, the fear of contamination with SARS-CoV-2 through contact with materials and surfaces has led to an intensified disposal of food packaging, promoting a setback in waste management. SCOPE AND APPROACH: The purpose of this short commentary is to address the impacts of increased use and disposal of food packaging during the COVID-19 pandemic. Technological solutions have been presented as tools to minimize the environmental impacts of the increased volume of disposed food packaging (namely, the development of biodegradable food packaging) as well as to minimize the occurrence of cross-contamination (namely, the incorporation of active antiviral components). KEY FINDINGS AND CONCLUSIONS: The consumer behavior in the COVID-19 pandemic requires actions concerning adoption of bioplastics for single-use food packaging. Polylactide (PLA) stands out for high production viability, performance comparable to those of petroleum-based thermoplastics, and carbon neutral life cycle. Moreover, active components including organic compounds (resveratrol, luteolin, myricetin etc.) and metals (e.g., copper, zinc, silver) can mitigate cross-contamination. Therefore, there are opportunities to reduce food packaging-related environmental footprints while also decreasing the occurrence of surface-mediated cross-contamination.

6.
Molecules ; 26(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946376

RESUMEN

Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.


Asunto(s)
Antocianinas/química , Antocianinas/aislamiento & purificación , Productos Agrícolas/química , Manipulación de Alimentos , Antocianinas/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Industria de Alimentos , Concentración de Iones de Hidrógeno , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Relación Estructura-Actividad
7.
Appl Microbiol Biotechnol ; 103(21-22): 8647-8656, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31515599

RESUMEN

In 1968, Arima et al. discovered the heptapeptide, known as surfactin, which belongs to a family of lipopeptides. Known for its ability to reduce surface tension, it also has biological activities such as antimicrobial and antiviral. Its non-ribosomal synthesis mechanism was later discovered (1991). Lipopeptides represent an important class of surfactants, which can be applied in many industrial sectors such as food, pharmaceutical, agrochemicals, detergents, and cleaning products. Currently, 75% of the surfactants used in the various industrial sectors are from the petrochemical industry. Nevertheless, there are global current demands (green chemistry concept) to replace the petrochemical products with environmentally friendly products, such as surfactants by biosurfactants. The production biosurfactants still are costly. Thus, an alternative to reduce the production costs is using agro-industrial waste as a culture medium associated with an efficient and scalable purification process. This review puts a light on the agro-industrial residues used to produce surfactin and the techniques used for its recovery.


Asunto(s)
Microbiología Industrial/economía , Lipopéptidos/economía , Lipopéptidos/metabolismo , Péptidos Cíclicos/economía , Péptidos Cíclicos/metabolismo , Tensoactivos/economía , Bacterias/genética , Bacterias/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Microbiología Industrial/historia , Microbiología Industrial/métodos , Lipopéptidos/genética , Lipopéptidos/historia , Péptidos Cíclicos/genética , Péptidos Cíclicos/historia , Tensoactivos/historia , Tensoactivos/metabolismo
8.
J Food Sci Technol ; 56(3): 1445-1453, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30956324

RESUMEN

This study evaluated the technological and functional performance of whole grain wheat flour (WGWF), blackberry flour (BF), and blackberry pieces (BP) in cookies, using a Central Rotatable Composite Design (R2 > 0.75, and p < 0.10 for model validation). Similar color and fracturability behavior was observed for all cookies with BF and BP, however the phenolic compounds (TPC) and anthocyanins (TAC) levels increased with increasing BF and BP. The formulation selected in the desirability function, containing 7.94% and 4.72% BP and BF, respectively, presented 1553.79 mg GAE/100 g TPC, 63.90 mg CGE/kg TAC. The WGWF and BF can be alternative ingredients to improve color and provide health benefits of cookies.

9.
Appl Microbiol Biotechnol ; 102(1): 17-37, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29032473

RESUMEN

Oligosaccharides are polymers with two to ten monosaccharide residues which have sweetener functions and sensory characteristics, in addition to exerting physiological effects on human health. The ones called nondigestible exhibit a prebiotic behavior being fermented by colonic microflora or stimulating the growth of beneficial bacteria, playing roles in the immune system, protecting against cancer, and preventing cardiovascular and metabolic issues. The global prebiotics market is expected to grow around 12.7% in the next 8 years, so manufacturers are developing new alternatives to obtain sustainable and efficient processes for application on a large scale. Most studied examples of biotechnological processes involve the development of new strategies for fructooligosaccharide, galactooligosaccharide, xylooligosaccharide, and mannanooligosaccharide synthesis. Among these, the use of whole cells in fermentation, synthesis of microbial enzymes (ß-fructofuranosidases, ß-galactosidases, xylanases, and ß-mannanases), and enzymatic process development (permeabilization, immobilization, gene expression) can be highlighted, especially if the production costs are reduced by the use of agro-industrial residues or by-products such as molasses, milk whey, cotton stalks, corncobs, wheat straw, poplar wood, sugarcane bagasse, and copra meal. This review comprises recent studies to demonstrate the potential for biotechnological production of oligosaccharides, and also aspects that need more investigation for future applications in a large scale.


Asunto(s)
Biotecnología/métodos , Industria de Alimentos , Oligosacáridos/genética , Oligosacáridos/metabolismo , Prebióticos , Biotecnología/economía , Colon/microbiología , Productos Lácteos , Fermentación , Glucuronatos/biosíntesis , Glucuronatos/metabolismo , Humanos , Oligosacáridos/biosíntesis , Oligosacáridos/economía , Polisacáridos/metabolismo , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/metabolismo , beta-Manosidasa/biosíntesis , beta-Manosidasa/metabolismo
10.
Biotechnol Lett ; 40(3): 561-567, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29288353

RESUMEN

OBJECTIVE: To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation. RESULTS: C. acutatum and C. nymphaeae used limonene, α-pinene, ß-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34-4.01 g limonene-1,2-diol l-1, depending on the substrate (R-(+)-limonene, S-(-)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product. CONCLUSIONS: This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.


Asunto(s)
Biotransformación/fisiología , Colletotrichum/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Carbono/metabolismo , Biología Computacional , Ciclohexenos , Limoneno , Monoterpenos/análisis , Monoterpenos/química , Aceites de Plantas , Terpenos
11.
Appl Microbiol Biotechnol ; 101(9): 3493-3511, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28343243

RESUMEN

Global demand for biotechnological products has increased steadily over the years. Thus, need for optimized processes and reduced costs appear as a key factor in the success of this market. A process tool of high importance is the direct or indirect use of enzymes to catalyze the generation of various substances. Also, obtaining aromas and pigments from natural sources has becoming priority in cosmetic and food industries in order to supply the demand from consumers to substitute synthetic compounds, especially when by-products can be used as starting material for this purpose. Species from Fusarium genera are recognized as promising sources of several enzymes for industrial application as well as biocatalysts in the production of aromas, pigments and second generation biofuels, among others. In addition, secondary metabolites from these strains can present important biological activities for medical field. In this approach, this review brings focus on the use of Fusarium sp. strains in biotechnological production of compounds of industrial interest, showing the most recent researches in this area, results obtained and the best process conditions for each case.


Asunto(s)
Biotecnología/métodos , Fusarium/genética , Fusarium/metabolismo , Microbiología Industrial/métodos , Ingeniería Metabólica
12.
Appl Microbiol Biotechnol ; 100(24): 10265-10293, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27844141

RESUMEN

Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.


Asunto(s)
Productos Biológicos/metabolismo , Biotecnología/métodos , Glucolípidos/química , Glucolípidos/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Biotecnología/tendencias
13.
Food Technol Biotechnol ; 53(4): 428-435, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27904377

RESUMEN

Sugarcane bagasse is an important lignocellulosic material studied for the production of xylooligosaccharides (XOS). Some XOS are considered soluble dietary fibre, with low caloric value and prebiotic effect, but they are expensive and not easily available. In a screening of 138 fungi, only nine were shortlisted, and just Aspergillus fumigatus M51 (35.6 U/mL) and A. fumigatus U2370 (28.5 U/mL) were selected as the most significant producers of xylanases. These fungi had low ß-xylosidase activity, which is desirable for the production of XOS. The xylanases from Trichoderma reesei CCT 2768, A. fumigatus M51 and A. fumigatus U2370 gave a significantly higher XOS yield, 11.9, 14.7 and 7.9% respectively, in a 3-hour reaction with hemicellulose from sugarcane bagasse. These enzymes are relatively thermostable at 40-50 °C and can be used in a wide range of pH values. Furthermore, these xylanases produced more prebiotic XOS (xylobiose and xylotriose) when compared with a commercial xylanase. The xylanases from A. fumigatus M51 reached a high level of XOS production (37.6%) in 48-72 h using hemicellulose extracted from sugarcane bagasse. This yield represents 68.8 kg of prebiotic XOS per metric tonne of cane bagasse. In addition, in a biorefinery, after hemicellulose extraction for XOS production, the residual cellulose could be used for the production of second-generation ethanol.

14.
Plants (Basel) ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794466

RESUMEN

Solanum is the largest genus within the Solanaceae family and has garnered considerable attention in chemical and biological investigations over the past 30 years. In this context, lobeira or "fruta-do-lobo" (Solanum lycocarpum St. Hill), a species predominantly found in the Brazilian Cerrado, stands out. Beyond the interesting nutritional composition of the fruits, various parts of the lobeira plant have been used in folk medicine as hypoglycemic, sedative, diuretic, antiepileptic, and antispasmodic agents. These health-beneficial effects have been correlated with various bioactive compounds found in the plant, particularly alkaloids. In this review, we summarize the alkaloid composition of the lobeira plant and its biological activities that have been reported in the scientific literature in the last decades. The compiled data showed that lobeira plants and fruits contain a wide range of alkaloids, with steroidal glycoalkaloid solamargine and solasonine being the major ones. These alkaloids, but not limited to them, contribute to different biological activities verified in alkaloid-rich extracts/fractions from the lobeira, including antioxidant, anti-inflammatory, anticancer, antigenotoxic, antidiabetic, antinociceptive, and antiparasitic effects. Despite the encouraging results, additional research, especially toxicological, pre-clinical, and clinical trials, is essential to validate these human health benefits and ensure consumers' safety and well-being.

15.
Plant Foods Hum Nutr ; 68(3): 222-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23709016

RESUMEN

Yacon (Smallanthus sonchifolius) is an Andean tuberous root that is regarded as a functional food given that it contains fructooligosaccharides (FOS), inulin and phenolic compounds. The consumption of FOS and inulin improves the growth of bifidobacteria in the colon, enhances mineral absorption and gastrointestinal metabolism and plays a role in the regulation of serum cholesterol. Furthermore, the literature reports that the consumption of these prebiotics promotes a positive modulation of the immune system, improving resistance to infections and allergic reactions. Certain studies have demonstrated the potential of yacon as an alternative food source for those patients with conditions that require dietary changes. This review intends to describe the potential of yacon as a prebiotic and its cultivation and industrial processing for human consumption.


Asunto(s)
Asteraceae/química , Alimentos Funcionales , Prebióticos , Animales , Bifidobacterium/crecimiento & desarrollo , Colon/microbiología , Suplementos Dietéticos , Manipulación de Alimentos , Alimentos Funcionales/análisis , Humanos , Inulina , Oligosacáridos , Fenoles , Hojas de la Planta/química , Tubérculos de la Planta/química
16.
Curr Nutr Rep ; 12(3): 445-464, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37273100

RESUMEN

PURPOSE OF REVIEW: NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS: NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , Mononucleótido de Nicotinamida/metabolismo , NAD/metabolismo , Niacinamida/metabolismo , Dieta
17.
Foods ; 12(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37444333

RESUMEN

Fruit-based beverages have been considered excellent food vehicles for delivering prebiotics. However, the conventional thermal processes currently used to microbiologically and enzymatically stabilize these products may cause significant losses in their sensory, physicochemical, nutritional, and bioactive characteristics. Thus, in this study, we evaluate the effect of different levels of pressure (8, 15, and 21 MPa) and temperature (35 and 55 °C) on the characteristics of an inulin-enriched araticum beverage processed with non-thermal supercritical carbon dioxide (SC-CO2) technology. The temperature showed a significant effect on total soluble solids, pH, particle size distribution, and kinetic stability. In contrast, pressure affected only the particle size distribution. The interaction between pressure and temperature influenced the total soluble solids, pH, and particle size distribution. Color parameters, ζ-potential, and glucose and fructose contents were not modified after all SC-CO2 treatments. Moreover, the SC-CO2 treatments preserved the inulin molecular structure, thus maintaining its prebiotic functionality. Overall, the SC-CO2 treatment did not alter the sensory, nutritional, and functional quality of the beverage, while improving its physical stability during storage. Therefore, non-thermal SC-CO2 treatment can be an alternative to current conventional processes for stabilizing inulin-enriched fruit-based beverages.

18.
Plants (Basel) ; 12(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050162

RESUMEN

Araticum (Annona crassiflora Mart.) is a native and endemic species to Brazilian Cerrado whose fruits have high sensorial, nutritional, bioactive, and economic potential. Its use in local folk medicine, associated with recent scientific findings, has attracted growing interest from different industrial sectors. Therefore, understanding the scientific advances achieved so far and identifying gaps to be filled is essential to direct future studies and transform accumulated knowledge into innovative technologies and products. In this review, we summarize the phytochemical composition, bioactivities, and food products from araticum fruit that have been reported in the scientific literature over the past 10 years. The compiled data showed that araticum fruit parts contain a wide range of bioactive compounds, particularly phenolic compounds, alkaloids, annonaceous acetogenins, carotenoids, phytosterols, and tocols. These phytochemicals contribute to different biological activities verified in araticum fruit extracts/fractions, including antioxidant, anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, anti-obesity, antidyslipidemic, antinociceptive, hepatoprotective, healing of the cutaneous wound, antibacterial, and insecticide effects. Despite the promising findings, further studies-particularly toxicological (especially, with byproducts), pre-clinical, and clinical trials-must be conducted to confirm these biological effects in humans and assure the safety and well-being of consumers.

19.
Food Res Int ; 163: 112213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596143

RESUMEN

Essential oils (EOs) are natural and effective agents for controlling microorganisms which cause biodeterioration and disease. However, their application is hampered/restricted due to hydrophobicity and rapid vaporization of these compounds. Encapsulation technology provides an effective approach to maintain EO stabilization and prevent the loss of volatile ingredients. Meanwhile, using a synthetic surfactant is seen as counter-productive; therefore, a natural biosurfactant is more reasonable and can potentially increase activity due to its other biological proprieties. This work aims to evaluate the mannosylerythritol lipid (MEL) biosurfactant combined with Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus essential oil emulsions (O/W) and evaluate its antimicrobial and antioxidant capacity. The biosurfactant MEL demonstrated activity against Bacillus subtilis and Penicillium sp. After emulsification, the antimicrobial activity of Thymus vulgaris and Lippia sidoides was increased against Escherichia coli (500 µg/mL), Staphylococcus aureus (600 µg/mL), Bacillus subtilis (120 µg/mL), Pseudomonas aeruginosa (1500 µg/mL), Penicillium sp. (62.25 µg/mL), Aspergillus flavus (250 µg/mL), Fusarium oxysporum (100 and 250 µg/mL), and Candida albicans (125 and 250 µg/mL). We report that emulsions prepared with MEL have high inhibitory activity, maintain the active concentration, and increase antioxidant capacity by 7.33% (Thymus vulgaris), 13.71% (Lippia sidoides), and 3.15% (Cymbopogon citratus).


Asunto(s)
Antiinfecciosos , Cymbopogon , Lippia , Aceites Volátiles , Thymus (Planta) , Antioxidantes/farmacología , Emulsiones , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología
20.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36582744

RESUMEN

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda