Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973426

RESUMEN

Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.


Asunto(s)
Malatos , NAD , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Glucólisis , Ácido Láctico , Malatos/metabolismo , NAD/metabolismo
2.
Nature ; 618(7963): 151-158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198494

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Asunto(s)
Glucosa , Neoplasias Pancreáticas , Ribosa , Microambiente Tumoral , Uridina , Animales , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ribosa/metabolismo , Uridina/química , Glucosa/deficiencia , División Celular , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Uridina Fosforilasa/deficiencia , Uridina Fosforilasa/genética , Uridina Fosforilasa/metabolismo , Humanos
3.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37225420

RESUMEN

Enzymatic reactions are crucial to explore the mechanistic function of metabolites and proteins in cellular processes and to understand the etiology of diseases. The increasing number of interconnected metabolic reactions allows the development of in silico deep learning-based methods to discover new enzymatic reaction links between metabolites and proteins to further expand the landscape of existing metabolite-protein interactome. Computational approaches to predict the enzymatic reaction link by metabolite-protein interaction (MPI) prediction are still very limited. In this study, we developed a Variational Graph Autoencoders (VGAE)-based framework to predict MPI in genome-scale heterogeneous enzymatic reaction networks across ten organisms. By incorporating molecular features of metabolites and proteins as well as neighboring information in the MPI networks, our MPI-VGAE predictor achieved the best predictive performance compared to other machine learning methods. Moreover, when applying the MPI-VGAE framework to reconstruct hundreds of metabolic pathways, functional enzymatic reaction networks and a metabolite-metabolite interaction network, our method showed the most robust performance among all scenarios. To the best of our knowledge, this is the first MPI predictor by VGAE for enzymatic reaction link prediction. Furthermore, we implemented the MPI-VGAE framework to reconstruct the disease-specific MPI network based on the disrupted metabolites and proteins in Alzheimer's disease and colorectal cancer, respectively. A substantial number of novel enzymatic reaction links were identified. We further validated and explored the interactions of these enzymatic reactions using molecular docking. These results highlight the potential of the MPI-VGAE framework for the discovery of novel disease-related enzymatic reactions and facilitate the study of the disrupted metabolisms in diseases.


Asunto(s)
Aprendizaje Automático , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Fenómenos Fisiológicos Celulares
4.
Nat Chem Biol ; 19(7): 837-845, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36973440

RESUMEN

Although nicotinamide adenine dinucleotide phosphate (NADPH) is produced and consumed in both the cytosol and mitochondria, the relationship between NADPH fluxes in each compartment has been difficult to assess due to technological limitations. Here we introduce an approach to resolve cytosolic and mitochondrial NADPH fluxes that relies on tracing deuterium from glucose to metabolites of proline biosynthesis localized to either the cytosol or mitochondria. We introduced NADPH challenges in either the cytosol or mitochondria of cells by using isocitrate dehydrogenase mutations, administering chemotherapeutics or with genetically encoded NADPH oxidase. We found that cytosolic challenges influenced NADPH fluxes in the cytosol but not NADPH fluxes in mitochondria, and vice versa. This work highlights the value of using proline labeling as a reporter system to study compartmentalized metabolism and reveals that NADPH homeostasis in the cytosolic and mitochondrial locations of a cell are independently regulated, with no evidence for NADPH shuttle activity.


Asunto(s)
Mitocondrias , Citosol/metabolismo , NADP/metabolismo , Mitocondrias/metabolismo
5.
Immunity ; 45(1): 60-73, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27396958

RESUMEN

Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Glucosa/metabolismo , Mitocondrias/metabolismo , Células Plasmáticas/inmunología , Ácido Pirúvico/metabolismo , Animales , Transporte Biológico Activo , Respiración de la Célula , Células Cultivadas , Glicosilación , Humanos , Inmunoglobulinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Estrés Fisiológico/inmunología
6.
Nat Methods ; 18(7): 779-787, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34239103

RESUMEN

Chimeric MS/MS spectra contain fragments from multiple precursor ions and therefore hinder compound identification in metabolomics. Historically, deconvolution of these chimeric spectra has been challenging and relied on specific experimental methods that introduce variation in the ratios of precursor ions between multiple tandem mass spectrometry (MS/MS) scans. DecoID provides a complementary, method-independent approach where database spectra are computationally mixed to match an experimentally acquired spectrum by using LASSO regression. We validated that DecoID increases the number of identified metabolites in MS/MS datasets from both data-independent and data-dependent acquisition without increasing the false discovery rate. We applied DecoID to publicly available data from the MetaboLights repository and to data from human plasma, where DecoID increased the number of identified metabolites from data-dependent acquisition data by over 30% compared to direct spectral matching. DecoID is compatible with any user-defined MS/MS database and provides automated searching for some of the largest MS/MS databases currently available.


Asunto(s)
Algoritmos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Sangre/metabolismo , Bases de Datos Factuales , Escherichia coli/metabolismo , Humanos , Reproducibilidad de los Resultados , Saccharomycetales/metabolismo , Procesamiento de Señales Asistido por Computador
7.
Nat Methods ; 18(11): 1370-1376, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725482

RESUMEN

Comprehensive metabolome analyses are essential for biomedical, environmental, and biotechnological research. However, current MS1- and MS2-based acquisition and data analysis strategies in untargeted metabolomics result in low identification rates of metabolites. Here we present HERMES, a molecular-formula-oriented and peak-detection-free method that uses raw LC/MS1 information to optimize MS2 acquisition. Investigating environmental water, Escherichia coli, and human plasma extracts with HERMES, we achieved an increased biological specificity of MS2 scans, leading to improved mass spectral similarity scoring and identification rates when compared with a state-of-the-art data-dependent acquisition (DDA) approach. Thus, HERMES improves sensitivity, selectivity, and annotation of metabolites. HERMES is available as an R package with a user-friendly graphical interface for data analysis and visualization.


Asunto(s)
Algoritmos , Escherichia coli/metabolismo , Metaboloma , Metabolómica/métodos , Plasma/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cromatografía Liquida/métodos , Humanos , Plasma/química , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis
8.
Genet Med ; : 101166, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38767059

RESUMEN

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in four siblings. METHODS: We identified five individuals from three unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data sheds light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

9.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277015

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , O(6)-Metilguanina-ADN Metiltransferasa/genética , Estudios Retrospectivos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metilación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
10.
J Chem Inf Model ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959055

RESUMEN

Libraries of collision cross-section (CCS) values have the potential to facilitate compound identification in metabolomics. Although computational methods provide an opportunity to increase library size rapidly, accurate prediction of CCS values remains challenging due to the structural diversity of small molecules. Here, we developed a machine learning (ML) model that integrates graph attention networks and multimodal molecular representations to predict CCS values on the basis of chemical class. Our approach, referred to as MGAT-CCS, had superior performance in comparison to other ML models in CCS prediction. MGAT-CCS achieved a median relative error of 0.47%/1.14% (positive/negative mode) and 1.40%/1.63% (positive/negative mode) for lipids and metabolites, respectively. When MGAT-CCS was applied to real-world metabolomics data, it reduced the number of false metabolite candidates by roughly 25% across multiple sample types ranging from plasma and urine to cells. To facilitate its application, we developed a user-friendly stand-alone web server for MGAT-CCS that is freely available at https://mgat-ccs-web.onrender.com. This work represents a step forward in predicting CCS values and can potentially facilitate the identification of small molecules when using ion mobility spectrometry coupled with mass spectrometry.

11.
Nat Rev Mol Cell Biol ; 13(4): 263-9, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22436749

RESUMEN

Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine.


Asunto(s)
Metabolómica/métodos , Fenómenos Bioquímicos , Espectrometría de Masas/métodos
12.
J Biol Chem ; 298(2): 101554, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973337

RESUMEN

The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer-based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic-euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Obesidad , Quinolonas , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Glucosa/metabolismo , Ratones , Ratones Obesos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ácido Pirúvico/metabolismo , Quinolonas/farmacología
13.
Anal Chem ; 95(25): 9397-9403, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37314824

RESUMEN

Peak-detection algorithms currently used to process untargeted metabolomics data were designed to maximize sensitivity at the sacrifice of selectively. Peak lists returned by conventional software tools therefore contain a high density of artifacts that do not represent real chemical analytes, which, in turn, hinder downstream analyses. Although some innovative approaches to remove artifacts have recently been introduced, they involve extensive user intervention due to the diversity of peak shapes present within and across metabolomics data sets. To address this bottleneck in metabolomics data processing, we developed a semisupervised deep learning-based approach, PeakDetective, for classification of detected peaks as artifacts or true peaks. Our approach utilizes two techniques for artifact removal. First, an unsupervised autoencoder is used to extract a low-dimensional, latent representation of each peak. Second, a classifier is trained with active learning to discriminate between artifacts and true peaks. Through active learning, the classifier is trained with less than 100 user-labeled peaks in a matter of minutes. Given the speed of its training, PeakDetective can be rapidly tailored to specific LC/MS methods and sample types to maximize performance on each type of data set. In addition to curation, the trained models can also be utilized for peak detection to immediately detect peaks with both high sensitivity and selectivity. We validated PeakDetective on five diverse LC/MS data sets, where PeakDetective showed greater accuracy compared to current approaches. When applied to a SARS-CoV-2 data set, PeakDetective enabled more statistically significant metabolites to be detected. PeakDetective is open source and available as a Python package at https://github.com/pattilab/PeakDetective.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , Programas Informáticos , Metabolómica/métodos
14.
Liver Int ; 43(3): 673-683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36367321

RESUMEN

Patients with cirrhosis exhibit features of circadian disruption. Hyperammonaemia has been suggested to impair both homeostatic and circadian sleep regulation. Here, we tested if hyperammonaemia directly disrupts circadian rhythm generation in the central pacemaker, the suprachiasmatic nuclei (SCN) of the hypothalamus. Wheel-running activity was recorded from mice fed with a hyperammonaemic or normal diet for ~35 days in a 12:12 light-dark (LD) cycle followed by ~15 days in constant darkness (DD). The expression of the clock protein PERIOD2 (PER2) was recorded from SCN explants before, during and after ammonia exposure, ±glutamate receptor antagonists. In LD, hyperammonaemic mice advanced their daily activity onset time by ~1 h (16.8 ± 0.3 vs. 18.1 ± 0.04 h, p = .009) and decreased their total activity, concentrating it during the first half of the night. In DD, hyperammonaemia reduced the amplitude of daily activity (551.5 ± 27.7 vs. 724.9 ± 59 counts, p = .007), with no changes in circadian period. Ammonia (≥0.01 mM) rapidly and significantly reduced PER2 amplitude, and slightly increased circadian period. The decrease in PER2 amplitude correlated with decreased synchrony among circadian cells in the SCN and increased extracellular glutamate, which was rescued by AMPA glutamate receptor antagonists. These data suggest that hyperammonaemia affects circadian regulation of rest-activity behaviour by increasing extracellular glutamate in the SCN.


Asunto(s)
Ácido Glutámico , Hiperamonemia , Ratones , Animales , Amoníaco , Antagonistas de Aminoácidos Excitadores , Ritmo Circadiano/fisiología
15.
Mol Cell ; 58(4): 699-706, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000853

RESUMEN

Renewed interest in metabolic research over the last two decades has inspired an explosion of technological developments for studying metabolism. At the forefront of methodological innovation is an approach referred to as "untargeted" or "discovery" metabolomics. The experimental objective of this technique is to comprehensively measure the entire metabolome, which constitutes a largely undefined set of molecules. Given its potential comprehensive coverage, untargeted metabolomics is often the first choice of experiments for investigators pursuing a metabolic research question. It is important to recognize, however, that untargeted metabolomics may not always be the optimal experimental approach. Conventionally, untargeted metabolomics only provides information about relative differences in metabolite pool sizes. Therefore, depending on the specific scientific question at hand, a complementary approach involving stable isotopes (such as metabolic flux analysis) may be better suited to provide biological insights. Unlike untargeted metabolomics, stable-isotope methods can provide information about differences in reaction rates.


Asunto(s)
Marcaje Isotópico/métodos , Metaboloma , Metabolómica/métodos , Transducción de Señal , Animales , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados
16.
Anal Chem ; 94(5): 2527-2535, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35089687

RESUMEN

While the combination of liquid chromatography and tandem mass spectrometry (LC-MS/MS) is commonly used for feature annotation in untargeted omics experiments, ensuring these prioritized features originate from endogenous metabolism remains challenging. Isotopologue workflows, such as isotopic ratio outlier analysis (IROA), mass isotopomer ratio analysis of U-13C labeled extracts (MIRACLE), and credentialing incorporate isotopic labels directly into metabolic precursors, guaranteeing that all features of interest are unequivocal byproducts of cellular metabolism. Furthermore, comprehensive separation and annotation of small molecules continue to challenge the metabolomics field, particularly for isomeric systems. In this paper, we evaluate the analytical utility of incorporating ion mobility spectrometry (IMS) as an additional separation mechanism into standard LC-MS/MS isotopologue workflows. Since isotopically labeled molecules codrift in the IMS dimension with their 12C versions, LC-IMS-CID-MS provides four dimensions (LC, IMS, MS, and MS/MS) to directly investigate the metabolic activity of prioritized untargeted features. Here, we demonstrate this additional selectivity by showcasing how a preliminary data set of 30 endogeneous metabolites are putatively annotated from isotopically labeled Escherichia coli cultures when analyzed by LC-IMS-CID-MS. Metabolite annotations were based on several molecular descriptors, including accurate mass measurement, carbon number, annotated fragmentation spectra, and collision cross section (CCS), collectively illustrating the importance of incorporating IMS into isotopologue workflows. Overall, our results highlight the enhanced separation space and increased annotation confidence afforded by IMS for metabolic characterization and provide a unique perspective for future developments in isotopically labeled MS experiments.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica/métodos , Flujo de Trabajo
17.
Anal Chem ; 94(50): 17370-17378, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36475608

RESUMEN

The success of precision medicine relies upon collecting data from many individuals at the population level. Although advancing technologies have made such large-scale studies increasingly feasible in some disciplines such as genomics, the standard workflows currently implemented in untargeted metabolomics were developed for small sample numbers and are limited by the processing of liquid chromatography/mass spectrometry data. Here we present an untargeted metabolomics workflow that is designed to support large-scale projects with thousands of biospecimens. Our strategy is to first evaluate a reference sample created by pooling aliquots of biospecimens from the cohort. The reference sample captures the chemical complexity of the biological matrix in a small number of analytical runs, which can subsequently be processed with conventional software such as XCMS. Although this generates thousands of so-called features, most do not correspond to unique compounds from the samples and can be filtered with established informatics tools. The features remaining represent a comprehensive set of biologically relevant reference chemicals that can then be extracted from the entire cohort's raw data on the basis of m/z values and retention times by using Skyline. To demonstrate applicability to large cohorts, we evaluated >2000 human plasma samples with our workflow. We focused our analysis on 360 identified compounds, but we also profiled >3000 unknowns from the plasma samples. As part of our workflow, we tested 14 different computational approaches for batch correction and found that a random forest-based approach outperformed the others. The corrected data revealed distinct profiles that were associated with the geographic location of participants.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Flujo de Trabajo , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos
18.
Anal Chem ; 93(4): 1912-1923, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33467846

RESUMEN

A growing number of software tools have been developed for metabolomics data processing and analysis. Many new tools are contributed by metabolomics practitioners who have limited prior experience with software development, and the tools are subsequently implemented by users with expertise that ranges from basic point-and-click data analysis to advanced coding. This Perspective is intended to introduce metabolomics software users and developers to important considerations that determine the overall impact of a publicly available tool within the scientific community. The recommendations reflect the collective experience of an NIH-sponsored Metabolomics Consortium working group that was formed with the goal of researching guidelines and best practices for metabolomics tool development. The recommendations are aimed at metabolomics researchers with little formal background in programming and are organized into three stages: (i) preparation, (ii) tool development, and (iii) distribution and maintenance.


Asunto(s)
Nube Computacional , Metabolómica/métodos , Programas Informáticos
19.
PLoS Biol ; 16(3): e2003782, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29596410

RESUMEN

It has been suggested that some cancer cells rely upon fatty acid oxidation (FAO) for energy. Here we show that when FAO was reduced approximately 90% by pharmacological inhibition of carnitine palmitoyltransferase I (CPT1) with low concentrations of etomoxir, the proliferation rate of various cancer cells was unaffected. Efforts to pharmacologically inhibit FAO more than 90% revealed that high concentrations of etomoxir (200 µM) have an off-target effect of inhibiting complex I of the electron transport chain. Surprisingly, however, when FAO was reduced further by genetic knockdown of CPT1, the proliferation rate of these same cells decreased nearly 2-fold and could not be restored by acetate or octanoic acid supplementation. Moreover, CPT1 knockdowns had altered mitochondrial morphology and impaired mitochondrial coupling, whereas cells in which CPT1 had been approximately 90% inhibited by etomoxir did not. Lipidomic profiling of mitochondria isolated from CPT1 knockdowns showed depleted concentrations of complex structural and signaling lipids. Additionally, expression of a catalytically dead CPT1 in CPT1 knockdowns did not restore mitochondrial coupling. Taken together, these results suggest that transport of at least some long-chain fatty acids into the mitochondria by CPT1 may be required for anabolic processes that support healthy mitochondrial function and cancer cell proliferation independent of FAO.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Proliferación Celular/fisiología , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Transporte de Electrón/efectos de los fármacos , Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno , Interferencia de ARN
20.
J Am Chem Soc ; 142(20): 9097-9105, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32275430

RESUMEN

Untargeted metabolomics aims to quantify the complete set of metabolites within a biological system, most commonly by liquid chromatography/mass spectrometry (LC/MS). Since nearly the inception of the field, compound identification has been widely recognized as the rate-limiting step of the experimental workflow. In spite of exponential increases in the size of metabolomic databases, which now contain experimental MS/MS spectra for over a half a million reference compounds, chemical structures still cannot be confidently assigned to many signals in a typical LC/MS dataset. The purpose of this Perspective is to consider why identification rates continue to be low in untargeted metabolomics. One rationalization is that many naturally occurring metabolites detected by LC/MS are true "novel" compounds that have yet to be incorporated into metabolomic databases. An alternative possibility, however, is that research data do not provide database matches because of informatic artifacts, chemical contaminants, and signal redundancies. Increasing evidence suggests that, for at least some sample types, many unidentifiable signals in untargeted metabolomics result from the latter rather than new compounds originating from the specimen being measured. The implications of these observations on chemical discovery in untargeted metabolomics are discussed.


Asunto(s)
Metabolómica , Animales , Cromatografía Liquida , Escherichia coli/metabolismo , Humanos , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda