Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Dev ; 24(20): 2303-16, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952539

RESUMEN

Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD kinase. Using Drosophila, we demonstrate that dCDK12 (CG7597) is a transcription-associated CTD kinase, the ortholog of yCtk1. Fluorescence microscopy reveals that the distribution of dCDK12 on formaldehyde-fixed polytene chromosomes is virtually identical to that of hyperphosphorylated RNA polymerase II (RNAPII), but is distinct from that of P-TEFb (dCDK9 + dCyclin T). Chromatin immunoprecipitation (ChIP) experiments confirm that dCDK12 is present on the transcribed regions of active Drosophila genes. Compared with P-TEFb, dCDK12 amounts are lower at the 5' end and higher in the middle and at the 3' end of genes (both normalized to RNAPII). Appropriately, Drosophila dCDK12 purified from nuclear extracts manifests CTD kinase activity in vitro. Intriguingly, we find that cyclin K is associated with purified dCDK12, implicating it as the cyclin subunit of this CTD kinase. Most importantly, we demonstrate that RNAi knockdown of dCDK12 in S2 cells alters the phosphorylation state of the CTD, reducing its Ser2 phosphorylation levels. Similarly, in human HeLa cells, we show that hCDK13 purified from nuclear extracts displays CTD kinase activity in vitro, as anticipated. Also, we find that chimeric (yeast/human) versions of Ctk1 containing the kinase homology domains of hCDK12/13 (or hCDK9) are functional in yeast cells (and also in vitro); using this system, we show that a bur1(ts) mutant is rescued more efficiently by a hCDK9 chimera than by a hCDK13 chimera, suggesting the following orthology relationships: Bur1 ↔ CDK9 and Ctk1 ↔ CDK12/13. Finally, we show that siRNA knockdown of hCDK12 in HeLa cells results in alterations in the CTD phosphorylation state. Our findings demonstrate that metazoan CDK12 and CDK13 are CTD kinases, and that CDK12 is orthologous to yeast Ctk1.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Western Blotting , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular , Mapeo Cromosómico , Ciclina T/genética , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Prueba de Complementación Genética , Células HeLa , Humanos , Microscopía Fluorescente , Mutación , Fosforilación , Proteínas Quinasas/genética , Interferencia de ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 110(12): 4697-702, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23401527

RESUMEN

Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Astrocitos/patología , Línea Celular , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Proteínas de Unión al ADN/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación
3.
Proc Natl Acad Sci U S A ; 110(8): E756-65, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23388633

RESUMEN

ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1(G93A) (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-ß signaling pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Astrocitos/patología , Neuronas Motoras/patología , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Médula Espinal/enzimología , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba
4.
J Neurosci ; 34(36): 11929-47, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186741

RESUMEN

The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.


Asunto(s)
Empalme Alternativo , Corteza Cerebral/metabolismo , Bases de Datos de Ácidos Nucleicos , Endotelio Vascular/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Transcriptoma , Animales , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Ratones , Análisis de Secuencia de ARN
5.
Proc Natl Acad Sci U S A ; 109(15): 5803-8, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451909

RESUMEN

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/patología , Mutación/genética , Proteinopatías TDP-43/genética , Adulto , Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Detergentes/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Especificidad de Órganos/efectos de los fármacos , Solubilidad/efectos de los fármacos
6.
Mol Cell Proteomics ; 11(6): M111.011767, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22199231

RESUMEN

RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology.


Asunto(s)
Mitosis , ARN Polimerasa II/metabolismo , Cromatografía en Gel , Enfermedad , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunoprecipitación , Interfase , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteoma/genética , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Proteómica , Interferencia de ARN , ARN Polimerasa II/aislamiento & purificación , Ribonucleoproteínas/genética , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Transcripción Genética
7.
Biochem Biophys Res Commun ; 397(1): 117-9, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20493173

RESUMEN

The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , Aedes , Secuencia de Aminoácidos , Animales , Bovinos , Pollos , ADN-Topoisomerasas de Tipo I/genética , Drosophila melanogaster , Humanos , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia
8.
Mol Cell Biol ; 25(8): 3305-16, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798214

RESUMEN

Histone methylation and the enzymes that mediate it are important regulators of chromatin structure and gene transcription. In particular, the histone H3 lysine 36 (K36) methyltransferase Set2 has recently been shown to associate with the phosphorylated C-terminal domain (CTD) of RNA polymerase II (RNAPII), implying that this enzyme has an important role in the transcription elongation process. Here we show that a novel domain in the C terminus of Set2 is responsible for interaction between Set2 and RNAPII. This domain, termed the Set2 Rpb1 interacting (SRI) domain, is encompassed by amino acid residues 619 to 718 in Set2 and is found to occur in a number of putative Set2 homologs from Schizosaccharomyces pombe to humans. Unexpectedly, BIACORE analysis reveals that the SRI domain binds specifically, and with high affinity, to CTD repeats that are doubly modified (serine 2 and serine 5 phosphorylated), indicating that Set2 association across the body of genes requires a specific pattern of phosphorylated RNAPII. Deletion of the SRI domain not only abolishes Set2-RNAPII interaction but also abolishes K36 methylation in vivo, indicating that this interaction is required for establishing K36 methylation on chromatin. Using 6-azauracil (6AU) as an indicator of transcription elongation defects, we found that deletion of the SRI domain conferred a strong resistance to this compound, which was identical to that observed with set2 deletion mutants. Furthermore, yeast strains carrying set2 alleles that are catalytically inactive or yeast strains bearing point mutations at K36 were also found to be resistant to 6AU. These data suggest that it is the methylation by Set2 that affects transcription elongation. In agreement with this, we have determined that deletion of SET2, its SRI domain, or amino acid substitutions at K36 result in an alteration of RNAPII occupancy levels over transcribing genes. Taken together, these data indicate K36 methylation, established by the SRI domain-mediated association of Set2 with RNAPII, plays an important role in the transcription elongation process.


Asunto(s)
Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transcripción Genética/fisiología , Uracilo/análogos & derivados , Alelos , Sustitución de Aminoácidos , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Secuencia Conservada , Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transcripción Genética/genética , Uracilo/farmacología
9.
Stem Cell Reports ; 9(2): 615-628, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28757163

RESUMEN

Modulation of transcription, either synthetic activation or repression, via dCas9-fusion proteins is a relatively new methodology with the potential to facilitate high-throughput up- or downregulation studies of gene function. Genetic studies of neurodevelopmental disorders have identified a growing list of risk variants, including both common single-nucleotide variants and rare copy-number variations, many of which are associated with genes having limited functional annotations. By applying a CRISPR-mediated gene-activation/repression platform to populations of human-induced pluripotent stem cell-derived neural progenitor cells, neurons, and astrocytes, we demonstrate that it is possible to manipulate endogenous expression levels of candidate neuropsychiatric risk genes across these three cell types. Although proof-of-concept studies using catalytically inactive Cas9-fusion proteins to modulate transcription have been reported, here we present a detailed survey of the reproducibility of gRNA positional effects across a variety of neurodevelopmental disorder-relevant risk genes, donors, neural cell types, and dCas9 effectors.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Imagen Molecular , Transcriptoma
10.
Methods Mol Biol ; 257: 17-28, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14769993

RESUMEN

The C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II is hyperphosphorylated during transcription elongation. The phosphoCTD is known to bind to a subset of RNA processing factors and to several other nuclear proteins, thereby positioning them to efficiently carry out their elongation-linked functions. The authors propose that additional phosphoCTD-associating proteins (PCAPs) exist and describe a systematic biochemical approach for identifying such proteins. A binding probe is generated by using yeast CTD kinase I to exhaustively phosphorylate a CTD fusion protein. This phosphoCTD is used to probe fractionated yeast or mammalian extracts in a Far Western protein interaction assay. Putative PCAPs are further purified and identified by mass spectrometry.


Asunto(s)
Western Blotting/métodos , Extractos Celulares/aislamiento & purificación , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Células HeLa , Humanos , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fosforilación , Unión Proteica , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Cell Rep ; 4(2): 385-401, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850290

RESUMEN

Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Microglía/fisiología , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Transcriptoma
12.
Sci Transl Med ; 5(188): 188le2, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23740897

RESUMEN

Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/citología , Neuronas Motoras/citología , Humanos
13.
PLoS One ; 3(1): e1448, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18197258

RESUMEN

BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/metabolismo , Proteína BRCA1/genética , Ciclo Celular , Daño del ADN , Genes Letales , Inestabilidad Genómica , Humanos , Hidrólisis
14.
Genes Dev ; 20(21): 2922-36, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079683

RESUMEN

The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.


Asunto(s)
ARN Polimerasa II/metabolismo , Animales , Núcleo Celular/enzimología , Núcleo Celular/genética , Núcleo Celular/fisiología , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/química , Transcripción Genética
15.
Proc Natl Acad Sci U S A ; 102(49): 17636-41, 2005 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-16314571

RESUMEN

The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from yeast was recently shown to bind the PCTD of elongating RNA polymerase II by means of a novel domain termed the Set2-Rpb1 interacting (SRI) domain. Here, we report the solution structure of the SRI domain in human Set2 (hSRI domain), which adopts a left-turned three-helix bundle distinctly different from other structurally characterized PCTD-interacting domains. NMR titration experiments mapped the binding surface of the hSRI domain to helices 1 and 2, and Biacore binding studies showed that the domain binds preferably to [Ser-2 + Ser-5]-phosphorylated CTD peptides containing two or more heptad repeats. Point-mutagenesis studies identified five residues critical for PCTD binding. In view of the differential effects of these point mutations on binding to different CTD phosphopeptides, we propose a model for the hSRI domain interaction with the PCTD.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Secuencia de Aminoácidos , Humanos , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Biochemistry ; 43(50): 15702-19, 2004 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-15595826

RESUMEN

CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.


Asunto(s)
Proteínas Quinasas/fisiología , Proteoma/metabolismo , ARN Polimerasa II/fisiología , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Quinasa de la Caseína I/fisiología , Metiltransferasas/fisiología , Modelos Moleculares , Mutación/genética , Péptidos/fisiología , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Empalme del ARN/genética , Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 279(24): 24957-64, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15047695

RESUMEN

The C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II is composed of tandem heptad repeats with consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. In yeast, this heptad sequence is repeated about 26 times, and it becomes hyperphosphorylated during transcription predominantly at serines 2 and 5. A network of kinases and phosphatases combine to determine the CTD phosphorylation pattern. We sought to determine the positional specificity of phosphorylation by yeast CTD kinase-I (CTDK-I), an enzyme implicated in various nuclear processes including elongation and pre-mRNA 3'-end formation. Toward this end, we characterized monoclonal antibodies commonly employed to study CTD phosphorylation patterns and found that the H5 monoclonal antibody reacts with CTD species phosphorylated at Ser2 and/or Ser5. We therefore used antibody-independent methods to study CTDK-I, and we found that CTDK-I phosphorylates Ser5 of the CTD if the CTD substrate is either unphosphorylated or prephosphorylated at Ser2. When Ser5 is already phosphorylated, CTDK-I phosphorylates Ser2 of the CTD. We also observed that CTDK-I efficiently generates doubly phosphorylated CTD repeats; CTD substrates that already contain Ser2-PO(4) or Ser5-PO(4) are more readily phosphorylated CTDK-I than unphosphorylby ated CTD substrates.


Asunto(s)
Proteínas Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , ARN Polimerasa II/química , Saccharomycetales/enzimología , Serina/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda