Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2308255121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412125

RESUMEN

MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Trastornos del Neurodesarrollo , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mutación
2.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
3.
J Med Genet ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937076

RESUMEN

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

4.
Mov Disord ; 39(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436103

RESUMEN

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Mutación Missense , Canales de Potasio de Rectificación Interna , Humanos , Masculino , Mutación Missense/genética , Femenino , Canales de Potasio de Rectificación Interna/genética , Adulto , Adolescente , Niño , Distonía/genética , Adulto Joven , Linaje , Persona de Mediana Edad , Secuenciación del Exoma , Preescolar
5.
Mol Psychiatry ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030819

RESUMEN

Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.

6.
Mol Psychiatry ; 28(2): 668-697, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385166

RESUMEN

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Asunto(s)
Trastornos del Neurodesarrollo , Masculino , Femenino , Humanos , Trastornos del Neurodesarrollo/genética , Mutación Missense , Genes Ligados a X , Fenotipo , Canales de Cloruro/genética
7.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740550

RESUMEN

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Masculino , Femenino , Niño , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crecimiento , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome , Índice de Masa Corporal , Estatura/genética
8.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32197073

RESUMEN

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Asunto(s)
Mutación del Sistema de Lectura/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neuronas/fisiología , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Orientación del Axón/genética , Secuencia de Bases/genética , Células Cultivadas , Preescolar , Regulación hacia Abajo/genética , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Ratones , Hipotonía Muscular/genética , Antígeno Ventral Neuro-Oncológico , Pez Cebra/genética
9.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738225

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Mutación con Ganancia de Función/genética , Mutación con Pérdida de Función/genética , Trastornos del Neurodesarrollo/genética , Aminoacil-ARN de Transferencia/genética , Alelos , Aminoacil-ARNt Sintetasas/genética , Línea Celular , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Linaje , ARN de Transferencia/genética , Células Madre/fisiología
10.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109419

RESUMEN

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de Aminoácido
11.
Mov Disord ; 38(10): 1950-1956, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37470282

RESUMEN

BACKGROUND: Heterozygous GAA expansions in the FGF14 gene have been related to autosomal dominant cerebellar ataxia (SCA27B-MIM:620174). Whether they represent a common cause of sporadic late-onset cerebellar ataxia (SLOCA) remains to be established. OBJECTIVES: To estimate the prevalence, characterize the phenotypic spectrum, identify discriminative features, and model longitudinal progression of SCA27B in a prospective cohort of SLOCA patients. METHODS: FGF14 expansions screening combined with longitudinal deep-phenotyping in a prospective cohort of 118 SLOCA patients (onset >40 years of age, no family history of cerebellar ataxia) without a definite diagnosis. RESULTS: Prevalence of SCA27B was 12.7% (15/118). Higher age of onset, higher Spinocerebellar Degeneration Functional Score, presence of vertigo, diplopia, nystagmus, orthostatic hypotension absence, and sensorimotor neuropathy were significantly associated with SCA27B. Ataxia progression was ≈0.4 points per year on the Scale for Assessment and Rating of Ataxia. CONCLUSIONS: FGF14 expansion is a major cause of SLOCA. Our natural history data will inform future FGF14 clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Ataxia/complicaciones , Ataxia Cerebelosa/epidemiología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/complicaciones , Estudios Prospectivos , Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/epidemiología , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/complicaciones
12.
J Neural Transm (Vienna) ; 130(3): 459-471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436153

RESUMEN

Intellectual disability with or without manifestations of autism and/or epilepsy affects 1-2% of the population, and it is estimated that more than 30-50% of these cases have a single genetic cause. More than 1000 genes and recurrent chromosomal abnormalities are involved in these genetic forms of neurodevelopmental disorders, which often remain insufficiently described in terms of clinical spectrum, associated medical problems, etc., due to their rarity and the often-limited number of patients' phenotypes reported. GenIDA is an international online participatory database that aims to better characterise the clinical manifestations and natural histories of these rare diseases. Clinical information is reported by parents of affected individuals using a structured questionnaire exploring physical parameters, cognitive and behavioural aspects, the presence or absence of neurological disorders or problems affecting major physiological functions, as well as autonomy and quality of life. This strengthens the implication in research of the concerned families. GenIDA aims to construct international cohorts of significant size of individuals affected by a given condition. As of July 2022, GenIDA counts some 1545 documented patient records from over 60 nationalities and collaborates with clinicians and researchers around the world who have access to the anonymized data collected to generate new, medically meaningful information to improve patient care. We present the GenIDA database here, together with an overview of the possibilities it offers to affected individuals, their families, and professionals in charge of the management of genetic forms of neurodevelopmental disorders. Finally, case studies of cohorts will illustrate the usefulness of GenIDA.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Calidad de Vida , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética
13.
J Med Genet ; 59(5): 505-510, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811134

RESUMEN

De novo missense variants in KCNH1 encoding Kv10.1 are responsible for two clinically recognisable phenotypes: Temple-Baraitser syndrome (TBS) and Zimmermann-Laband syndrome (ZLS). The clinical overlap between these two syndromes suggests that they belong to a spectrum of KCNH1-related encephalopathies. Affected patients have severe intellectual disability (ID) with or without epilepsy, hypertrichosis and distinctive features such as gingival hyperplasia and nail hypoplasia/aplasia (present in 20/23 reported cases).We report a series of seven patients with ID and de novo pathogenic KCNH1 variants identified by whole-exome sequencing or an epilepsy gene panel in whom the diagnosis of TBS/ZLS had not been first considered. Four of these variants, p.(Thr294Met), p.(Ala492Asp), p.(Thr493Asn) and p.(Gly496Arg), were located in the transmembrane domains S3 and S6 of Kv10.1 and one, p.(Arg693Gln), in its C-terminal cyclic nucleotide-binding homology domain (CNBHD). Clinical reappraisal by the referring clinical geneticists confirmed the absence of the distinctive gingival and nail features of TBS/ZLS.Our study expands the phenotypical spectrum of KCNH1-related encephalopathies to individuals with an attenuated extraneurological phenotype preventing a clinical diagnosis of TBS or ZLS. This subtype may be related to recurrent substitutions of the Gly496, suggesting a genotype-phenotype correlation and, possibly, to variants in the CNBHD domain.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Anomalías Múltiples , Anomalías Craneofaciales , Epilepsia/diagnóstico , Epilepsia/genética , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Fibromatosis Gingival , Hallux/anomalías , Deformidades Congénitas de la Mano , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Uñas Malformadas , Fenotipo , Pulgar/anomalías
14.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607920

RESUMEN

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Empalme Alternativo , Células HeLa , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Unión al ARN/genética
15.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422817

RESUMEN

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Asunto(s)
ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Proto-Oncogénicas/genética , ARN/genética , Humanos
16.
Genet Med ; 24(6): 1227-1237, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35300924

RESUMEN

PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.


Asunto(s)
Catarata , Enanismo , Hepatoblastoma , Discapacidad Intelectual , Neoplasias Hepáticas , Micrognatismo , Niño , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Síndrome
17.
Genet Med ; 24(2): 492-498, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906476

RESUMEN

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Asunto(s)
Epilepsia , Epilepsia/complicaciones , Epilepsia/genética , Homocigoto , Humanos , Sialiltransferasas/deficiencia , Sialiltransferasas/genética
18.
Genet Med ; 24(1): 179-191, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906456

RESUMEN

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Anomalías Musculoesqueléticas , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Anomalías Musculoesqueléticas/genética , Fenotipo
19.
Genet Med ; 24(3): 681-693, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906499

RESUMEN

PURPOSE: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. METHODS: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. RESULTS: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. CONCLUSION: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Epilepsia/genética , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Mutación , Fenotipo , Receptores de GABA-A/genética
20.
Clin Genet ; 102(4): 296-304, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35821609

RESUMEN

DYRK1A and Wiedemann-Steiner syndromes (WSS) are two genetic conditions associated with neurodevelopmental disorders (NDDs). Although their clinical phenotype has been described, their behavioral phenotype has not systematically been studied using standardized assessment tools. To characterize the latter, we conducted a retrospective study, collecting data on developmental history, autism spectrum disorder (ASD), adaptive functioning, behavioral assessments, and sensory processing of individuals with these syndromes (n = 14;21). In addition, we analyzed information collected from families (n = 20;20) using the GenIDA database, an international patient-driven data collection aiming to better characterize natural history of genetic forms of NDDs. In the retrospective study, individuals with DYRK1A syndrome showed lower adaptive behavior scores compared to those with WSS, whose scores showed greater heterogeneity. An ASD diagnosis was established for 57% (8/14) of individuals with DYRK1A syndrome and 24% (5/21) of those with WSS. Language and communication were severely impaired in individuals with DYRK1A syndrome, which was also evident from GenIDA data, whereas in WSS patients, exploration of behavioral phenotypes revealed the importance of anxiety symptomatology and ADHD signs, also flagged in GenIDA. This study, describing the behavioral and sensorial profiles of individuals with WSS and DYRK1A syndrome, highlighted some specificities important to be considered for patients' management.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Anomalías Múltiples , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Anomalías Craneofaciales , Trastornos del Crecimiento , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Hipertricosis , Discapacidad Intelectual , Proteína de la Leucemia Mieloide-Linfoide/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios Retrospectivos , Síndrome
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda