Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(21): 6035-40, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162343

RESUMEN

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.


Asunto(s)
Disacáridos/farmacología , Regulación Enzimológica de la Expresión Génica/fisiología , Papilas Gustativas/enzimología , Gusto/fisiología , alfa-Glucosidasas/biosíntesis , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , alfa-Glucosidasas/genética
2.
J Pediatr Gastroenterol Nutr ; 66 Suppl 3: S24-S29, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29762372

RESUMEN

The mucosal maltase enzymes are characterized by an activity that produces glucose from linear glucose polymers, assayed with the disaccharide maltose. The related enzyme isomaltase produces glucose from branched glucose polymers, assayed with palatinose. Maltase and isomaltase activities are part of the 4 disaccharidases assayed from clinical duodenal biopsy homogenates. The reported maltase activities are more difficult to interpret than lactase or sucrase activities because both the sucrase-isomaltase and maltase-glucoamylase proteins have overlapping maltase activities. The early work of Dahlqvist identified 4 maltase activities from human small intestinal mucosa. On one peptide, sucrase (maltase Ib) and isomaltase (maltase Ia) activities shared maltase activities but identified the enzymes as sucrase-isomaltase. On the other peptide, no distinguishing characteristics of the 2 maltase activities (maltases II and III) were detected and the activities identified as maltase-glucoamylase. The nutritional/clinical importance of small intestinal maltase and isomaltase activities are due to their crucial role in the digestion of food starches to absorbable free glucose. This review focuses on the interpretation of biopsy maltase activities in the context of reported lactase, sucrase, maltase, and palatinase biopsy assay activity patterns. We present a classification of mucosal maltase deficiencies and novel primary maltase deficiency (Ib, II, III) and provide a clarification of the role of maltase activity assayed from clinically obtained duodenal biopsies, as a path toward future clinical and molecular genomic investigations.


Asunto(s)
Mucosa Intestinal/enzimología , alfa-Glucosidasas/deficiencia , Animales , Digestión/fisiología , Humanos , Mucosa Intestinal/metabolismo , Mutación , alfa-Glucosidasas/análisis , alfa-Glucosidasas/metabolismo
3.
J Pediatr Gastroenterol Nutr ; 65(2): e35-e42, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28267073

RESUMEN

BACKGROUND AND OBJECTIVE: Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. METHODS: Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. RESULTS: After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. CONCLUSIONS: Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/tratamiento farmacológico , Suplementos Dietéticos , Digestión/fisiología , Fármacos Gastrointestinales/uso terapéutico , Glucano 1,4-alfa-Glucosidasa/uso terapéutico , Almidón/metabolismo , Complejo Sacarasa-Isomaltasa/deficiencia , Sacarasa/deficiencia , Administración Oral , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Glucemia/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Masculino , Distribución Aleatoria , Musarañas , Complejo Sacarasa-Isomaltasa/metabolismo , Resultado del Tratamiento
4.
Proc Natl Acad Sci U S A ; 110(15): E1380-9, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23520048

RESUMEN

Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements of the actin cytoskeleton. Here we address how polarized enterocytes harboring actin-rich apical microvilli undergo extensive cell remodeling to drive injury repair. Using live imaging technologies, we demonstrate that enterocytes in vitro and in vivo rapidly depolarize their microvilli at the wound edge. Through its F-actin-severing activity, the microvillar actin-binding protein villin drives both apical microvilli disassembly in vitro and in vivo and promotes lamellipodial extension. Photoactivation experiments indicate that microvillar actin is mobilized at the lamellipodium, allowing optimal migration. Finally, efficient repair of colonic mechanical injuries requires villin severing of F-actin, emphasizing the importance of villin function in intestinal homeostasis. Thus, villin severs F-actin to ensure microvillus depolarization and enterocyte remodeling upon injury. This work highlights the importance of specialized apical pole disassembly for the repolarization of epithelial cells initiating migration.


Asunto(s)
Actinas/química , Enterocitos/citología , Proteínas de Microfilamentos/fisiología , Actinas/metabolismo , Animales , Apoptosis , Diferenciación Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Endoscopía , Enterocitos/metabolismo , Femenino , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microvellosidades/metabolismo , Fenotipo , Porcinos , Cicatrización de Heridas
5.
J Clin Biochem Nutr ; 54(1): 55-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24426192

RESUMEN

Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal α-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-confluence for complete differentiation, and dietary carbohydrate molecules of glucose, sucrose (disaccharide of glucose and fructose), maltose (disaccharide of two glucoses α-1,4 linked), and isomaltose (disaccharide of two glucoses α-1,6 linked) were used to treat the cells. qRT-PCR results showed that all the carbohydrate molecules induced the expression of the SI gene, though maltose (and isomaltose) showed an incremental increase in mRNA levels over time that glucose did not. Western blot analysis of the SI protein revealed that only maltose treatment induced a higher molecular weight band (Mw ~245 kDa), also at higher expression level, suggesting post-translational processing of SI, and more importantly a sensing of maltose. Further work is warranted regarding this putative sensing response as a potential control point for starch digestion and glucose generation in the small intestine.

6.
J Biol Chem ; 287(44): 36917-21, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22988246

RESUMEN

The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Dextrinas/química , Glucosa/química , Membrana Mucosa/enzimología , alfa-Glucosidasas/química , Animales , Humanos , Hidrólisis , Cinética , Ratones , Peso Molecular , Subunidades de Proteína/química , Almidón/química , Zea mays/química , alfa-Amilasas/química
7.
J Biol Chem ; 287(38): 31929-38, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22851177

RESUMEN

Starch digestion involves the breakdown by α-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-border epithelial cells, and each contains a catalytic N- and C-terminal subunit. All four subunits have α-1,4-exohydrolytic glucosidase activity, and the SI N-terminal subunit has an additional exo-debranching activity on the α-1,6-linkage. Inhibition of α-amylase and/or α-glucosidases is a strategy for treatment of type 2 diabetes. We illustrate here the concept of "toggling": differential inhibition of subunits to examine more refined control of glucogenesis of the α-amylolyzed starch malto-oligosaccharides with the aim of slow glucose delivery. Recombinant MGAM and SI subunits were individually assayed with α-amylolyzed waxy corn starch, consisting mainly of maltose, maltotriose, and branched α-limit dextrins, as substrate in the presence of four different inhibitors: acarbose and three sulfonium ion compounds. The IC(50) values show that the four α-glucosidase subunits could be differentially inhibited. The results support the prospect of controlling starch digestion rates to induce slow glucose release through the toggling of activities of the mucosal α-glucosidases by selective enzyme inhibition. This approach could also be used to probe associated metabolic diseases.


Asunto(s)
Glucosa/metabolismo , Membrana Mucosa/enzimología , alfa-Glucosidasas/metabolismo , Animales , Diabetes Mellitus/metabolismo , Drosophila melanogaster , Glicósido Hidrolasas/química , Glicosilación , Humanos , Hidrólisis , Concentración 50 Inhibidora , Mucosa Intestinal/metabolismo , Cinética , Ratones , Modelos Químicos , Obesidad/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química
8.
J Pediatr Gastroenterol Nutr ; 57(6): 704-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23838818

RESUMEN

OBJECTIVES: Six enzyme activities are needed to digest starch to absorbable free glucose; 2 luminal α-amylases (AMY) and 4 mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) subunit activities are involved in the digestion. The AMY activities break down starch to soluble oligomeric dextrins; mucosal MGAM and SI can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. We hypothesized that MGAM, with higher maltase than SI, drives digestion on ad limitum intakes and SI, with lower activity but more abundant amount, constrains ad libitum starch digestion. METHODS: Mgam null and wild-type (WT) mice were fed with starch diets ad libitum and ad limitum. Fractional glucogenesis (fGG) derived from starch was measured and fractional gluconeogenesis and glycogenolysis were calculated. Carbohydrates in small intestine were determined. RESULTS: After ad libitum meals, null and WT had similar increases of blood glucose concentration. At low intakes, null mice had less (f)GG (P = 0.02) than WT mice, demonstrating the role of Mgam activity in ad limitum feeding; null mice did not reduce fGG responses to ad libitum intakes demonstrating the dominant role of SI activity during full feeding. Although fGG was rising after feeding, fractional gluconeogenesis fell, especially for null mice. CONCLUSIONS: The fGNG (endogenous glucogenesis) in null mice complemented the fGG (exogenous glucogenesis) to conserve prandial blood glucose concentrations. The hypotheses that Mgam contributes a high-efficiency activity on ad limitum intakes and SI dominates on ad libitum starch digestion were confirmed.


Asunto(s)
Carbohidratos de la Dieta/metabolismo , Digestión , Gluconeogénesis , Glucosa/metabolismo , Almidón/metabolismo , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/metabolismo , Animales , Glucemia/metabolismo , Digestión/genética , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Intestino Delgado/enzimología , Intestino Delgado/metabolismo , Ratones , Ratones Noqueados , Mutación , Periodo Posprandial , alfa-Glucosidasas/genética
9.
Biochem Biophys Res Commun ; 429(1-2): 39-44, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23131558

RESUMEN

Discoidin domain receptor-2 (DDR2) is a cell surface tyrosine kinase receptor that can be activated by soluble collagen and has been implicated in diverse physiological functions including organism growth and wound repair. In the current studies, we used fibronectin and collagen-coated 2D surfaces and collagen matrices in combination with siRNA technology to investigate the role of DDR2 in a range of fibroblast motile activities. Silencing DDR2 with siRNA inhibited cell spreading and migration, and similar inhibition occurred regardless whether cells were interacting with fibronectin or collagen surfaces. Under the assay conditions used, DDR2 tyrosine kinase activation was not observed unless soluble collagen was added to the incubation medium. Finally silencing DDR2 also inhibited human fibroblast migration in 3D collagen matrices but had no effect on 3D collagen matrix remodeling and contraction. Taken together, our findings suggest that DDR2 is required for normal fibroblast spreading and migration independent of adhesion ligand and collagen activation of DDR2 tyrosine kinase.


Asunto(s)
Movimiento Celular , Colágeno/metabolismo , Fibroblastos/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Mitogénicos/fisiología , Adhesión Celular , Células Cultivadas , Receptores con Dominio Discoidina , Activación Enzimática , Fibroblastos/enzimología , Humanos , Ligandos , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Mitogénicos/genética , Solubilidad
10.
Cell Immunol ; 269(2): 135-43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21492831

RESUMEN

Chronic inflammation is an important contributor to the insulin resistance observed in type 2 diabetes (T2D). We evaluated the expression and function of the P2X(7) receptor and CD39/Entpd1, molecules involved in the cellular regulation of inflammation, in peripheral blood mononuclear cells from T2D patients, and their correlation with the concentration of HbA1c in blood. T2D patients with deficient metabolic control (DC) showed increased proportion of P2X(7)(+) cells compared with healthy individuals; T2D-DC subjects also displayed higher proportion of CD14(+), CD4(+) and CD19(+) subpopulations of P2X(7)(+) cells when compared with T2D patients with acceptable metabolic control. A significant association was observed between the proportion of P2X(7)(+)CD14(+) cells and blood concentration of LDL-c. In addition, the percentages of CD39(+) cells and CD39(+)CD19(+) cells were significantly associated with HbA1c and fasting plasma glucose levels. No changes were observed in the function of P2X(7)(+) cells from T2D patients; however, enhanced CD39/Entpd1 enzyme activity and low serum levels of IL-17 were detected. Therefore, CD39(+) cells could have a balancing regulatory role in the inflammatory process observed in patients with T2D.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/farmacología , Adulto , Glucemia/metabolismo , LDL-Colesterol/sangre , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Interleucina-17/sangre , Interleucina-1beta/metabolismo , Selectina L/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/enzimología , Lipopolisacáridos/farmacología , Masculino , Persona de Mediana Edad , Receptores Purinérgicos P2X4/metabolismo , Adulto Joven
11.
Bioorg Med Chem ; 19(13): 3929-34, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21669536

RESUMEN

Inhibition of intestinal α-glucosidases and pancreatic α-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 glycoside hydrolases responsible for the final step of starch hydrolysis. Here we compare the inhibition profiles of the individual N- and C-terminal catalytic subunits of both glucosidases by clinical glucosidase inhibitors, acarbose and miglitol, and newly discovered glucosidase inhibitors from an Ayurvedic remedy used for the treatment of Type II diabetes. We show that features of the compounds introduce selectivity towards the subunits. Together with structural data, the results enhance the understanding of the role of each catalytic subunit in starch digestion, helping to guide the development of new compounds with subunit specific antidiabetic activity. The results may also have relevance to other metabolic diseases such as obesity and cardiovascular disease.


Asunto(s)
Almidón/metabolismo , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacología , Acarbosa/química , Acarbosa/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas , Cinética , Monosacáridos/química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Complejo Sacarasa-Isomaltasa/antagonistas & inhibidores , Alcoholes del Azúcar/química , Alcoholes del Azúcar/farmacología , Sulfatos/química , Sulfatos/farmacología
12.
Nutrition ; 78: 110857, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599415

RESUMEN

OBJECTIVES: Maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) are mucosal α-glucosidases required for the digestion of starch to glucose. We hypothesized that a dietary approach to reduce Mgam and Si activities can reduce glucose generation and absorption, and improve glucose control. METHODS: Rice starch was entrapped in alginate microspheres to moderate in vitro digestion properties. Three groups of 8-wk old mice (n = 8) were conditioned for 7 d with low 13C-starch-based materials differing in digestion rates (fast, slow, and slower), and then given a digestible 13C-labeled cornstarch test feeding to determine its digestion to glucose. RESULTS: Conditioning of the small intestine with the slowly digestible starches for 7 d reduced jejunal α-glucosidase and sucrase activities, as well as glucose absorption for the slowly digestible starch slower group (P < 0.01). A correlative relationship was found between glucose absorption from a cornstarch test feeding given at d 7 and jejunal α-glucosidase and sucrase activities (R2 = 0.64; 0.67). However, total prandial glucose levels during the 2-h feeding period did not differ. CONCLUSIONS: Decreased glucogenesis from a digestible starch feeding was found in mice conditioned on slowly digestible starch diets, suggesting that a dietary approach incorporating slowly digestible starches may change α-glucosidase activities to moderate glucose absorption rate.


Asunto(s)
Digestión , alfa-Glucosidasas , Animales , Dieta , Glucosa , Ratones , Almidón
13.
J Nutr ; 139(4): 684-90, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19193815

RESUMEN

Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.


Asunto(s)
Digestión , Glucosa/metabolismo , Homeostasis , Almidón/metabolismo , alfa-Glucosidasas/metabolismo , Alimentación Animal , Animales , Ayuno , Genotipo , Insulina/sangre , Ratones , Ratones Noqueados , Membrana Mucosa/enzimología , Sacarasa/metabolismo , alfa-Glucosidasas/deficiencia , alfa-Glucosidasas/genética
14.
J Pediatr Gastroenterol Nutr ; 48(4): 412-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19330928

RESUMEN

BACKGROUND: Congenital sucrase-isomaltase deficiency (CSID) is characterized by absence or deficiency of the mucosal sucrase-isomaltase enzyme. Specific diagnosis requires upper gastrointestinal biopsy with evidence of low to absent sucrase enzyme activity and normal histology. The hydrogen breath test (BT) is useful, but is not specific for confirmation of CSID. We investigated a more specific 13C-sucrose labeled BT. OBJECTIVES: Determine whether CSID can be detected with the 13C-sucrose BT without duodenal biopsy sucrase assay, and if the 13C-sucrose BT can document restoration of sucrose digestion by CSID patients after oral supplementation with sacrosidase (Sucraid). METHODS: Ten CSID patients were diagnosed by low biopsy sucrase activity. Ten controls were children who underwent endoscopy and biopsy because of dyspepsia or chronic diarrhea with normal mucosal enzymes activity and histology. Uniformly labeled 13C-glucose and 13C-sucrose loads were orally administered. 13CO2 breath enrichments were assayed using an infrared spectrophotometer. In CSID patients, the 13C-sucrose load was repeated adding Sucraid. Sucrose digestion and oxidation were calculated as a mean percent coefficient of glucose oxidation averaged between 30 and 90 minutes. RESULTS: Classification of patients by 13C-sucrose BT percent coefficient of glucose oxidation agreed with biopsy sucrase activity. The breath test also documented the return to normal of sucrose digestion and oxidation after supplementation of CSID patients with Sucraid. CONCLUSIONS: 13C-sucrose BT is an accurate and specific noninvasive confirmatory test for CSID and for enzyme replacement management.


Asunto(s)
Pruebas Respiratorias/métodos , Errores Innatos del Metabolismo de los Carbohidratos/diagnóstico , Isótopos de Carbono , Complejo Sacarasa-Isomaltasa/deficiencia , Sacarosa/metabolismo , beta-Fructofuranosidasa/uso terapéutico , Adolescente , Biopsia , Errores Innatos del Metabolismo de los Carbohidratos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Dióxido de Carbono/metabolismo , Niño , Preescolar , Suplementos Dietéticos , Femenino , Glucosa/metabolismo , Humanos , Lactante , Masculino , Sacarasa/metabolismo , Complejo Sacarasa-Isomaltasa/genética
15.
J Nutr ; 138(4): 685-92, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18356321

RESUMEN

The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Subunidades de Proteína/química , Almidón/metabolismo , alfa-Glucosidasas/química , Acarbosa , Catálisis , Dextrinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/metabolismo
16.
FEBS Lett ; 581(13): 2381-8, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17485087

RESUMEN

Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.


Asunto(s)
Intestino Delgado/enzimología , Almidón/metabolismo , alfa-Glucosidasas/metabolismo , Digestión , Glucano 1,4-alfa-Glucosidasa/metabolismo , Humanos , Hidrólisis , Cinética , Manihot , Páncreas/enzimología , Proteínas Recombinantes/metabolismo , Rhizopus/enzimología , Zea mays , alfa-Amilasas/metabolismo
20.
J Pediatr Gastroenterol Nutr ; 45(1): 32-43, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17592362

RESUMEN

BACKGROUND: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine alpha-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal alpha-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). PATIENTS AND METHODS: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. RESULTS: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro alpha-glucogenesis. Recombinant human pancreatic alpha-amylase alone contributed <15% of in vitro alpha-glucogenesis; however, alpha-amylase strongly amplified the mucosal alpha-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by alpha-amylase digested starch product "brake" and contributes only 20% of mucosal alpha-glucogenic activity. SI contributes most of the alpha-glucogenic activity at higher oligomer substrate concentrations. CONCLUSIONS: MGAM primes and SI activity sustains and constrains prandial alpha-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during children's brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.


Asunto(s)
Enterocitos/metabolismo , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucosa/metabolismo , Polisacáridos/metabolismo , alfa-Glucosidasas/metabolismo , Animales , Biopsia , Niño , Digestión , Duodeno/enzimología , Enterocitos/enzimología , Humanos , Inmunoprecipitación , Mucosa Intestinal/enzimología , Ratones , Oligo-1,6-Glucosidasa/metabolismo , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda