Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 62(16): e202218965, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36799716

RESUMEN

Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17-28 nm, 0.07-0.13 eV) along with high fluorescence quantum yields (72-85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S0 and S1 state geometries, contribute to the narrower emission.

2.
J Am Chem Soc ; 144(48): 22316-22324, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36404706

RESUMEN

The intrinsic relationship between helicenes and circulenes is of fundamental interest and importance in molecular engineering. Herein, electrophilic borylation of phenanthroline-derived aza[5]helicenes is presented, resulting in the incorporation of a boryl unit into two termini of helicenes to afford quasi-[7]circulenes. Their bowl-shaped structures were determined by X-ray diffraction. UV-vis absorption and fluorescence spectroscopy, as well as electrochemical measurements and DFT calculations, gave insight into their electronic properties. Variable-temperature NMR studies and DFT calculations revealed bowl-to-bowl inversion at room temperature and bowl-to-helix equilibria at elevated temperature, highlighting the important role of B ← N bond strength in tuning their dynamic properties.

3.
Chemistry ; 28(48): e202201130, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35647673

RESUMEN

Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.


Asunto(s)
Electrones , Agua , Fluorescencia , Humanos , Oxígeno Singlete , Tiofenos
4.
Angew Chem Int Ed Engl ; 61(15): e202200599, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104020

RESUMEN

Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)3 does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.

5.
Chemistry ; 27(35): 9094-9101, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33844337

RESUMEN

A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr2 Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.

6.
Chemistry ; 27(20): 6274-6282, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33496983

RESUMEN

A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m-2 . These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.

7.
Chemistry ; 27(16): 5142-5159, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33411942

RESUMEN

We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.


Asunto(s)
ADN , ARN , Sitios de Unión , Fluorometría , Modelos Moleculares
8.
Chemistry ; 27(43): 11226-11233, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008250

RESUMEN

Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.

9.
Angew Chem Int Ed Engl ; 60(9): 4833-4840, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33231909

RESUMEN

Using 4-phenylpyridine or 2-phenylpyridine in place of biphenyl, two electron-poor phenylpyridyl-fused boroles, [TipPBB1]4 and TipPBB2 were prepared. [TipPBB1]4 adopts a unique coordination mode and forms a tetramer with a cavity in both the solid state and solution. The boron center of TipPBB2 is 4-coordinate in the solid state but the system dissociates in solution, leading to 3-coordinate borole species. Compared to its borafluorene analogues, the electron-accepting ability of TipPBB2 is largely enhanced by the pyridyl group. TipPBB2 exhibits dual fluorescence in solution due to an equilibrium between free TipPBB2 and a weak intermolecular coordination adduct with a second molecule. This equilibrium was further investigated by low-temperature NMR spectroscopy and photophysical studies. Theoretical studies indicate that the highest occupied molecular orbital (HOMO) of TipPBB2 localizes at the Tip group, in contrast to its borafluorene derivatives, wherein the HOMOs are localized on the borafluorene cores.

10.
Adv Funct Mater ; 30(31): 2002064, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32774198

RESUMEN

In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(FXyl)2 compounds 1-5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure-property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π-bridge, which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters.

11.
Chemistry ; 26(57): 12951-12963, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-32428359

RESUMEN

Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2 ] or [N(nBu4 )][HF2 ]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas.

12.
Chemistry ; 26(46): 10626-10633, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32510684

RESUMEN

We observed a surprisingly high electronically driven regioselectivity for the iridium-catalyzed C-H borylation of donor-π-acceptor (D-π-A) systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(F Xyl)2 ) as the acceptor, and 1,4-phenylene as the π-bridge. Under our conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor group. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations) the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2 ) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.

13.
Chemistry ; 26(56): 12794-12808, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-31999019

RESUMEN

Three different perfluoroalkylated borafluorenes (F Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton (F XylF Bf, F Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (F MesF Bf, F Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe2 -F XylF Bf, p-NMe2 -F Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative F MesF Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 µs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe2 -F XylF Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the F MesF Bf and F XylF Bf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.

14.
Chemistry ; 26(27): 6017-6028, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32104942

RESUMEN

A bis-triarylborane tetracation (4-Ar2 B-3,5-Me2 C6 H2 )-C≡C-C≡C-(3,5-Me2 C6 H2 -4-BAr2 [Ar=(2,6-Me2 -4-NMe3 -C6 H2 )+ ] (24+ ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar2 B-3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 -4-BAr2 ) (34+ ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2 N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne rather than a bithiophene linker resulted in an opposite emission effect (quenching vs. enhancement), and 24+ bound to BSA 100 times stronger than 34+ . Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss-RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10 nm concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications.


Asunto(s)
Butadienos/química , ADN/química , ARN/química , Dicroismo Circular , Cristalografía por Rayos X , Fluorescencia , Fluorometría , Humanos , Estructura Molecular
15.
Chemistry ; 25(60): 13777-13784, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31471986

RESUMEN

N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, E ox 1 / 2 =-0.40 V vs. ferrocene/ferrocenium, Fc/Fc+ , in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which confirms the stronger donating ability of NHOs.

16.
Chemistry ; 25(57): 13164-13175, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31322301

RESUMEN

Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.


Asunto(s)
Compuestos de Anilina/química , Cationes/química , Supervivencia Celular , Estructura Molecular , Fotones , Solubilidad , Espectrometría de Fluorescencia
17.
Chemistry ; 25(59): 13566-13571, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31433081

RESUMEN

The steric and electronic properties of aryl substituents in monoaryl borohydrides (Li[ArBH3 ]) and dihydroboranes were systematically varied and their reactions with [Ru(PCy3 )2 HCl(H2 )] (Cy: cyclohexyl) were studied, resulting in bis(σ)-borane or terminal borylene complexes of ruthenium. These variations allowed for the investigation of the factors involved in the activation of dihydroboranes in the synthesis of terminal borylene complexes. The complexes were studied by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and density functional theory (DFT) calculations. The experimental and computational results suggest that the ortho-substitution of the aryl groups is necessary for the formation of terminal borylene complexes.

18.
Chemistry ; 21(49): 17844-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482113

RESUMEN

Access to novel imine-substituted 1,2-azaborinines, as well as highly arylated boracyclohexa-3,5-dienes has been developed by ring expansion of boroles with diazoalkanes with varying degrees of steric bulk. The formation of a diazoalkane intermediate is also discussed for the reaction of ortho-brominated p-tolyl-azide with 1,2,3,4,5-pentaphenylborole. Structural details as well as UV/Vis spectroscopic and cyclic voltammetric data are provided. These boron-containing heterocycles have the potential to serve as building blocks for boron-containing materials.

19.
Chem Sci ; 13(47): 14165-14178, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36540825

RESUMEN

The choice of backbone linker for two ortho-bis-(9-borafluorene)s has a great influence on the LUMO located at the boron centers and, therefore, the reactivity of the respective compounds. Herein, we report the room temperature rearrangement of 1,2-bis-(9-borafluorenyl)-ortho-carborane, C2B10H10-1,2-[B(C12H8)]2 ([2a]) featuring o-carborane as the inorganic three-dimensional backbone and the synthesis of 1,2-bis-(9-borafluorenyl)benzene, C6H4-1,2-[B(C12H8)]2 (2b), its phenylene analog. DFT calculations on the transition state for the rearrangement support an intramolecular C-H bond activation process via an SEAr-like mechanism in [2a], and predicted that the same rearrangement would take place in 2b, but at elevated temperatures, which indeed proved to be the case. The rearrangement gives access to 3a and 3b as dibora-benzo[a]fluoroanthene isomers, a form of diboron polycyclic aromatic hydrocarbon (PAH) that had yet to be explored. The isolated compounds 2b, 3a, and 3b were fully characterized by NMR, HRMS, cyclic voltammetry (CV), single-crystal X-ray diffraction analysis, and photophysical measurements, supported by DFT and TD-DFT calculations.

20.
Dalton Trans ; 50(1): 355-361, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33320139

RESUMEN

Two derivatives of phenylpyridyl-fused boroles were prepared via functionalization of the pyridyl groups, namely to an electron-rich dihydropyridine moiety (compound 1) and an electron-deficient N-methylpyridinium cation (compound 2). Due to strong conjugation between the dihydropyridine moiety and the boron atom, the reduction potential of compound 1 shifts cathodically. In contrast, compound 2 exhibits three reduction processes with a first reversible reduction potential anodically shifted in comparison to its precursor (TipPBB2) or the non-borylated framework 1-methyl-2-phenylpyridin-1-ium triflate (3). The significantly anodically shifted reduction potential indicates the extreme electron deficiency of compound 2, which also leads to the reversible coordination of THF. Photophysical properties of both compounds in different solvents were investigated. Theoretical studies further support the strong conjugation in the ground state of compound 1 and the electron-deficient property of compound 2.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda