Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Rev Sci Instrum ; 91(1): 013316, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012575

RESUMEN

The NIO1 (Negative Ion Optimization phase 1) source can provide continuous beam operation, which is convenient for systematic parameter and equipment studies. Even in the pure volume production regime, the source yield was found to depend on conditioning procedures. Magnetic configuration tests continued adding magnets to the existing setup; the filter field component Bx has been progressively extended to span the -12 to 5 mT range, and as a trend, source performances improved with |Bx|. The progress of camera beam diagnostics and of the quality of the volume-produced H- beam is also shown. The status, off-line results, and reliability of a first NIO1 cesium oven are discussed; other upgrades in preparation (cavity ring down spectrometer, the end calorimeter, and conceptual tests of the energy recovery system) are also listed.

2.
Rev Sci Instrum ; 79(2 Pt 2): 02A301, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18315091

RESUMEN

Beams from electron cyclotron resonance ion source (ECRIS) with radio frequency ovens for refractory material (using a Mo coil) were recently demonstrated; results for Ti and V are here discussed, with temperature T(s) > or = 2300 K stably maintained and extracted current of about 1000 nA for V(8+) and V(9+). The status of sputter probes is also reported, and the reason why trapping efficiency may be lower than in the oven case are investigated. The simple tubular probe concept show typical currents of Sn(18+) about 250 nA, for the most abundant isotopes, but an operating pressure of about 300 microPa may be required. Some preliminary experiments were performed with Penning probes, showing that transmission of Sn or Pr from Penning cathode to ECRIS plasma is limited. Placement of tin onto anticathode and use of collimator between Penning and ECRIS are also discussed.

3.
Rev Sci Instrum ; 87(2): 02B320, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26932048

RESUMEN

Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW).

4.
Rev Sci Instrum ; 85(2): 02A929, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593508

RESUMEN

The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

5.
Rev Sci Instrum ; 85(2): 02A704, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593438

RESUMEN

Neutral Beam Injectors (NBI), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact RF ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, is being installed at Padua, in Consorzio RFX, to provide a test bench for source optimizations in the framework of the accompanying activities in support to the ITER NBI test facility. NIO1 construction and status of the overall installation, including a high voltage deck and an optical cavity ring down spectrometer are here summarized and reported. Plasma and low voltage beam operations are discussed. Development of a sampling beam calorimeter (with small sampling holes, and a segmented cooling circuit) is also discussed.

6.
Rev Sci Instrum ; 81(2): 02A315, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20192336

RESUMEN

From April 2008 the PIAVE injector for the ALPI booster was involved in the upgrade of the high voltage platform housing an electron cyclotron resonance (ECR) source. A 14.5 GHz SUPERNANOGAN type ECR replaced the existing source ALICE; at the same time, the whole platform beam line was redesigned and beam shaping and diagnostic system were installed. The source and the platform were ready to be put into operation in January 2009. PIAVE's commissioning was started from late March and completed in May 2009 using an argon beam. A description of the upgrade will be given in the following; beam quality leading to an improved transmission through the injector will be shown. Results on first gaseous and metallic beams produced will also be given.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda