Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
EMBO Rep ; 24(10): e57090, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592911

RESUMEN

The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.

2.
J Infect Dis ; 225(9): 1621-1625, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34453537

RESUMEN

We adapted the RNA FISH Stellaris method to specifically detect the expression of Plasmodium genes by flow cytometry and ImageStream (Flow-FISH). This new method accurately quantified the erythrocytic forms of (1) Plasmodium falciparum and Plasmodium vivax and (2) the sexual stages of P vivax from patient isolates. ImageStream analysis of liver stage sporozoites using a combination of surface circumsporozoite protein (CSP), deoxyribonucleic acid, and 18S RNA labeling proved that the new Flow-FISH is suitable for gene expression studies of transmission stages. This powerful multiparametric single-cell method offers a platform of choice for both applied and fundamental research on the biology of malaria parasites.


Asunto(s)
Malaria , Esporozoítos , Animales , Expresión Génica , Humanos , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , ARN
3.
PLoS Biol ; 17(6): e3000308, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31181082

RESUMEN

Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesin family to various host receptors. Here, we investigated the effect of phosphorylation of variant surface antigen 2-CSA (VAR2CSA), a member of the PfEMP1 family associated to placental sequestration, on its capacity to adhere to chondroitin sulfate A (CSA) present on the placental syncytium. We showed that phosphatase treatment of IEs impairs cytoadhesion to CSA. MS analysis of recombinant VAR2CSA phosphosites prior to and after phosphatase treatment, as well as of native VAR2CSA expressed on IEs, identified critical phosphoresidues associated with CSA binding. Site-directed mutagenesis on recombinant VAR2CSA of 3 phosphoresidues localised within the CSA-binding region confirmed in vitro their functional importance. Furthermore, using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9), we generated a parasite line in which the phosphoresidue T934 is changed to alanine and showed that this mutation strongly impairs IEs cytoadhesion to CSA. Taken together, these results demonstrate that phosphorylation of the extracellular region of VAR2CSA plays a major role in IEs cytoadhesion to CSA and provide new molecular insights for strategies aiming to reduce the morbidity and mortality of PM.


Asunto(s)
Antígenos de Protozoos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Variación Antigénica , Antígenos de Protozoos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Eritrocitos/parasitología , Femenino , Humanos , Malaria , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Parásitos , Fosforilación , Placenta , Plasmodium falciparum/genética , Embarazo , Unión Proteica
4.
Nucleic Acids Res ; 48(1): 184-199, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777939

RESUMEN

DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2-0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01-0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.


Asunto(s)
5-Metilcitosina/análogos & derivados , ADN Protozoario/genética , Epigénesis Genética , Genoma de Protozoos , Plasmodium falciparum/genética , ARN Mensajero/genética , 5-Metilcitosina/metabolismo , Citosina/metabolismo , Metilación de ADN , ADN Protozoario/metabolismo , Eritrocitos/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hidroxilación , Plasmodium falciparum/metabolismo , ARN Mensajero/metabolismo
5.
Mol Syst Biol ; 16(8): e9569, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32816370

RESUMEN

Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Plasmodium falciparum/patogenicidad , Proteómica/métodos , Factores de Transcripción/metabolismo , Factores de Virulencia/genética , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Sistemas CRISPR-Cas , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , Intrones , Espectrometría de Masas , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Factores de Virulencia/metabolismo
6.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833341

RESUMEN

Post-translational modifications of histone H3 N-terminal tails are key epigenetic regulators of virulence gene expression and sexual commitment in the human malaria parasite Plasmodium falciparum Here, we identify proteolytic clipping of the N-terminal tail of nucleosome-associated histone H3 at amino acid position 21 as a new chromatin modification. A cathepsin C-like proteolytic clipping activity is observed in nuclear parasite extracts. Notably, an ectopically expressed version of clipped histone H3, PfH3p-HA, is targeted to the nucleus and integrates into mononucleosomes. Furthermore, chromatin immunoprecipitation and next-generation sequencing analysis identified PfH3p-HA as being highly enriched in the upstream region of six genes that play a key role in DNA replication and repair: In these genes, PfH3p-HA demarcates a specific 1.5 kb chromatin island adjacent to the open reading frame. Our results indicate that, in P. falciparum, the process of histone clipping may precede chromatin integration hinting at preferential targeting of pre-assembled PfH3p-containing nucleosomes to specific genomic regions. The discovery of a protease-directed mode of chromatin organization in P. falciparum opens up new avenues to develop new anti-malarials.


Asunto(s)
Replicación del ADN , Histonas/metabolismo , Malaria Falciparum/parasitología , Nucleosomas/metabolismo , Plasmodium falciparum/fisiología , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica , Eritrocitos/parasitología , Regulación de la Expresión Génica , Histonas/química , Histonas/genética , Humanos , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos
7.
Nature ; 513(7518): 431-5, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25043062

RESUMEN

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.


Asunto(s)
Exorribonucleasas/metabolismo , Silenciador del Gen , Genes Protozoarios/genética , Malaria Cerebral/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , ARN Protozoario/metabolismo , Alelos , Variación Antigénica/genética , Cromatina/enzimología , Regulación hacia Abajo/genética , Eritrocitos/parasitología , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Humanos , Intrones/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sitio de Iniciación de la Transcripción , Virulencia/genética , Factores de Virulencia/genética
8.
EMBO Rep ; 18(11): 1968-1977, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28935715

RESUMEN

Leishmania affects millions of people worldwide. Its genome undergoes constitutive mosaic aneuploidy, a type of genomic plasticity that may serve as an adaptive strategy to survive distinct host environments. We previously found high rates of asymmetric chromosome allotments during mitosis that lead to the generation of such ploidy. However, the underlying molecular events remain elusive. Centromeres and kinetochores most likely play a key role in this process, yet their identification has failed using classical methods. Our analysis of the unconventional kinetochore complex recently discovered in Trypanosoma brucei (KKTs) leads to the identification of a Leishmania KKT gene candidate (LmKKT1). The GFP-tagged LmKKT1 displays "kinetochore-like" dynamics of intranuclear localization throughout the cell cycle. By ChIP-Seq assay, one major peak per chromosome is revealed, covering a region of 4 ±2 kb. We find two largely conserved motifs mapping to 14 of 36 chromosomes while a higher density of retroposons are observed in 27 of 36 centromeres. The identification of centromeres and of a kinetochore component of Leishmania chromosomes opens avenues to explore their role in mosaic aneuploidy.


Asunto(s)
Centrómero/metabolismo , Cromosomas/química , Genoma de Protozoos , Cinetocoros/metabolismo , Leishmania major/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Aneuploidia , Secuencia de Bases , Centrómero/ultraestructura , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Cinetocoros/ultraestructura , Leishmania major/metabolismo , Mitosis , Mosaicismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Nature ; 499(7457): 223-7, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23823717

RESUMEN

The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1 protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown. Here we show that knocking out the P. falciparum variant-silencing SET gene (here termed PfSETvs), which encodes an orthologue of Drosophila melanogaster ASH1 and controls histone H3 lysine 36 trimethylation (H3K36me3) on var genes, results in the transcription of virtually all var genes in the single parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var genes and the intronic promoter, expression of var genes coincides with transcription of their corresponding antisense long noncoding RNA. These results uncover a previously unknown role of PfSETvs-dependent H3K36me3 in silencing var genes in P. falciparum that might provide a general mechanism by which orthologues of PfSETvs repress gene expression in other eukaryotes. PfSETvs knockout parasites expressing all PfEMP1 proteins may also be applied to the development of a malaria vaccine.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Factores de Virulencia/genética , Proteínas de Unión al ADN , Proteínas de Drosophila , Eritrocitos/citología , Eritrocitos/metabolismo , Eritrocitos/parasitología , Genes Protozoarios/genética , Histonas/química , Intrones/genética , Lisina/metabolismo , Vacunas contra la Malaria/genética , Metilación , Plasmodium falciparum/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Protozoarias/genética , ARN Largo no Codificante/genética , Factores de Transcripción , Sitio de Iniciación de la Transcripción , Virulencia/genética
10.
Cell Microbiol ; 19(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28256794

RESUMEN

Dormant liver stage forms (hypnozoites) of the malaria parasite Plasmodium vivax present major hurdles to control and eradicate infection. Despite major research efforts, the molecular composition of hypnozoites remains ill defined. Here, we applied a combination of state-of-the-art technologies to generate the first transcriptome of hypnozoites. We developed a robust laser dissection microscopy protocol to isolate individual Plasmodium cynomolgi hypnozoites and schizonts from infected monkey hepatocytes and optimized RNA-seq analysis to obtain the first transcriptomes of these stages. Comparative transcriptomic analysis identified 120 transcripts as being differentially expressed in the hypnozoite stage relative to the dividing liver schizont, with 69 and 51 mRNAs being up- or down-regulated, respectively, in the hypnozoites. This lead to the identification of potential markers of commitment to and maintenance of the dormant state of the hypnozoite including three transcriptional regulators of the ApiAP2 family, one of which is unique to P. cynomolgi and P. vivax, and the global translational repressor, eIF2a kinase eIK2, all of which are upregulated in the hypnozoite. Together, this work not only provides a primary experimentally-derived list of molecular markers of hypnozoites but also identifies transcriptional and posttranscriptional regulation of gene expression as potentially being key to establishing and maintaining quiescence.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Hígado/parasitología , Plasmodium cynomolgi/fisiología , Animales , Haplorrinos , Hepatocitos/parasitología , Captura por Microdisección con Láser
11.
RNA Biol ; 15(9): 1206-1214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235972

RESUMEN

Antisense transcription emerges as a key regulator of important biological processes in the human malaria parasite Plasmodium falciparum. RNA-processing factors, however, remain poorly characterized in this pathogen. Here, we purified the multiprotein RNA exosome complex of malaria parasites by affinity chromatography, using HA-tagged PfRrp4 and PfDis3 as the ligands. Seven distinct core exosome subunits (PfRrp41, PfMtr3, PfRrp42, PfRrp45, PfRrp4, PfRrp40, PfCsl4) and two exoribonuclease proteins PfRrp6 and PfDis3 are identified by mass spectrometry. Western blot analysis detects Dis3 and Rrp4 predominantly in the cytoplasmic fraction during asexual blood stage development. An inducible gene knock out of the PfDis3 subunit reveals the upregulation of structural and coding RNA, but the vast majority belongs to antisense RNA. Furthermore, we detect numerous types of cryptic unstable transcripts (CUTs) linked to virulence gene families including antisense RNA in the rif gene family. Our work highlights the limitations of steady-state RNA analysis to predict transcriptional activity and link the RNA surveillance machinery directly with post-transcriptional control and gene expression in malaria parasites.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , ARN sin Sentido/metabolismo , Proteínas de Unión al ARN/genética
13.
Nucleic Acids Res ; 44(20): 9710-9718, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27466391

RESUMEN

Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens.


Asunto(s)
Composición de Base , Regulación de la Expresión Génica , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN no Traducido/genética , Activación Transcripcional , Secuencia de Bases , Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Conformación de Ácido Nucleico , Plasmodium falciparum/metabolismo , ARN no Traducido/química
14.
Cell Microbiol ; 17(10): 1405-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25939677

RESUMEN

Protozoan pathogens that cause leishmaniasis in humans are relatively refractory to genetic manipulation. In this work, we implemented the CRISPR-Cas9 system in Leishmania parasites and demonstrated its efficient use for genome editing. The Cas9 endonuclease was expressed under the control of the Dihydrofolate Reductase-Thymidylate Synthase (DHFR-TS) promoter and the single guide RNA was produced under the control of the U6snRNA promoter and terminator. As a proof of concept, we chose to knockout a tandemly repeated gene family, the paraflagellar rod-2 locus. We were able to obtain null mutants in a single round of transfection. In addition, we confirmed the absence of off-target editions by whole genome sequencing of two independent clones. Our work demonstrates that CRISPR-Cas9-mediated gene knockout represents a major improvement in comparison with existing methods. Beyond gene knockout, this genome editing tool opens avenues for a multitude of functional studies to speed up research on leishmaniasis.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Genoma de Protozoos , Leishmania/genética , Biología Molecular/métodos , Parasitología/métodos , Eliminación de Gen , Recombinación Genética
15.
Antimicrob Agents Chemother ; 59(2): 950-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25421480

RESUMEN

Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.


Asunto(s)
Antimaláricos/uso terapéutico , Azepinas/uso terapéutico , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Quinazolinas/uso terapéutico , Animales , Antimaláricos/química , Azepinas/química , Femenino , Células Hep G2 , Histona Metiltransferasas , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Ratones SCID , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Quinazolinas/química
16.
RNA Biol ; 12(6): 586-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25892118

RESUMEN

Malaria is caused by a unicellular protozoan pathogen of the genus Plasmodium. Although genes represent monocistronic units that are expressed in a life cycle stage-specific manner, post-transcriptional regulation via translational repression of mRNA has been observed in parasite stages that transition from the vertebrate host to the Anopheles vector. An interesting new type of post-transcriptional control was recently discovered in Plasmodium falciparum stages that infect human erythrocytes. A subgroup of genes that were thought to be transcriptionally silent are actually transcribed but degraded immediately by an RNase II that is recruited to these gene loci. This cryptic RNA is not detectable in steady-state RNA but has been detected using nuclear run-on techniques and in mutant RNase II parasites. Nascent RNA degradation controls virulence genes expressed in a monoallelic fashion and noncoding RNAs (ncRNAs), but also a number of housekeeping-like of genes. More studies on other life cycle stages may reveal the full extent of this type of gene regulation in malaria parasites. It is tempting to speculate that RNase II-mediated gene control may exist in other eukaryotic organisms.


Asunto(s)
Exorribonucleasas/metabolismo , Plasmodium falciparum/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética
17.
Proc Natl Acad Sci U S A ; 109(41): 16708-13, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23011794

RESUMEN

Epigenetic factors such as histone methylation control the developmental progression of malaria parasites during the complex life cycle in the human host. We investigated Plasmodium falciparum histone lysine methyltransferases as a potential target class for the development of novel antimalarials. We synthesized a compound library based upon a known specific inhibitor (BIX-01294) of the human G9a histone methyltransferase. Two compounds, BIX-01294 and its derivative TM2-115, inhibited P. falciparum 3D7 parasites in culture with IC(50) values of ~100 nM, values at least 22-fold more potent than their apparent IC(50) toward two human cell lines and one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day. Importantly, treatment of P. falciparum parasites in culture with BIX-01294 or TM2-115 resulted in significant reductions in histone H3K4me3 levels in a concentration-dependent and exposure time-dependent manner. Together, these results suggest that BIX-01294 and TM2-115 inhibit malaria parasite histone methyltransferases, resulting in rapid and irreversible parasite death. Our data position histone lysine methyltransferases as a previously unrecognized target class, and BIX-01294 as a promising lead compound, in a presently unexploited avenue for antimalarial drug discovery targeting multiple life-cycle stages.


Asunto(s)
Antimaláricos/farmacología , Azepinas/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Quinazolinas/farmacología , Secuencia de Aminoácidos , Animales , Antimaláricos/química , Azepinas/química , Western Blotting , Células Cultivadas , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Estadios del Ciclo de Vida , Lisina/metabolismo , Malaria/tratamiento farmacológico , Malaria/parasitología , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Parasitemia/parasitología , Parasitemia/prevención & control , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Quinazolinas/química , Homología de Secuencia de Aminoácido
18.
BMC Genomics ; 15: 150, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24559473

RESUMEN

BACKGROUND: Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. RESULTS: To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3'-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes.Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3' untranslated region length of 523 bp. CONCLUSIONS: Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3' UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum.


Asunto(s)
Plasmodium falciparum/genética , ARN sin Sentido , ARN Protozoario , Transcripción Genética , Regiones no Traducidas 3' , Núcleo Celular/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Poliadenilación , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Cell Microbiol ; 15(5): 718-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23351305

RESUMEN

Phenotypic variation in genetically identical malaria parasites is an emerging topic. Although antigenic variation is only part of a more global parasite strategy to create adaptation through epigenetically controlled transcriptional variability, it is the central mechanism enabling immune evasion and promoting pathogenesis. The var gene family is the best-studied example in a wide range of clonally variant gene families in Plasmodium falciparum. It is unique in its strict selection of a single member for activation, a process termed monoallelic expression. The conceptual advances that have emerged from studying var genes show striking common epigenetic features with many other clonally variant gene families or even single-copy genes that show a variegated expression in parasite populations. However, major mechanistic questions, such as the existence of a potential expression site and the identity of transcription factors or genetic elements driving singular gene choice, are still unanswered. In this review we discuss the recent findings in the molecular processes essential for clonal variation, namely silencing, activation, poising and switching. Integrating findings about all clonally variant gene families and other mutually exclusive expression systems will hopefully drive mechanistic understanding of antigenic variation.


Asunto(s)
Variación Antigénica/inmunología , Malaria Falciparum/genética , Plasmodium falciparum/inmunología , Animales , Variación Antigénica/genética , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Regiones Promotoras Genéticas
20.
Eukaryot Cell ; 12(5): 697-702, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475702

RESUMEN

The human malaria parasite Plasmodium falciparum modifies the erythrocyte it infects by exporting variant proteins to the host cell surface. The var gene family that codes for a large, variant adhesive surface protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) plays a particular role in this process, which is linked to pathogenesis and immune evasion. A single member of this gene family is highly transcribed while the other 59 members remain silenced. Importantly, var gene transcription occurs at a spatially restricted, but yet undefined, perinuclear site that is distinct from repressed var gene clusters. To advance our understanding of monoallelic expression, we investigated whether nuclear pores associate with the var gene expression site. To this end, we studied the nuclear pore organization during the asexual blood stage using a specific antibody directed against a subunit of the nuclear pore, P. falciparum Nup116 (PfNup116). Ring and schizont stage parasites showed highly polarized nuclear pore foci, whereas in trophozoite stage nuclear pores redistributed over the entire nuclear surface. Colocalization studies of var transcripts and anti-PfNup116 antibodies showed clear dissociation between nuclear pores and the var gene expression site in ring stage. Similar results were obtained for another differentially transcribed perinuclear gene family, the ribosomal DNA units. Furthermore, we show that in the poised state, the var gene locus is not physically linked to nuclear pores. Our results indicate that P. falciparum does form compartments of high transcriptional activity at the nuclear periphery which are, unlike the case in yeast, devoid of nuclear pores.


Asunto(s)
ADN Ribosómico/genética , Poro Nuclear/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Células Cultivadas , ADN Ribosómico/metabolismo , Eritrocitos/parasitología , Expresión Génica , Regulación de la Expresión Génica , Genes Protozoarios , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Trofozoítos/diagnóstico por imagen , Trofozoítos/metabolismo , Ultrasonografía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda