Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Foodborne Pathog Dis ; 20(8): 343-350, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37410536

RESUMEN

Uropathogenic Escherichia coli (UPEC) is known to cause 65-75% of human urinary tract infection (UTI) cases. Poultry meat is a reservoir of UPEC, which is suspected to cause foodborne UTIs. In the present study, we aimed to determine the growth potential of UPEC in ready-to-eat chicken breasts prepared by sous-vide processing. Four reference strains isolated from the urine of UTI patients (Bioresource Collection and Research Center [BCRC] 10,675, 15,480, 15,483, and 17,383) were tested by polymerase chain reaction assay for related genes to identify their phylogenetic type and UPEC specificity. A cocktail of these UPEC strains was inoculated into sous-vide cooked chicken breast at 103-4 colony-forming unit (CFU)/g and stored at 4°C, 10°C, 15°C, 20°C, 30°C, and 40°C. Changes in the populations of UPEC during storage were analyzed by a one-step kinetic analysis method using the U.S. Department of Agriculture [USDA] Integrated Pathogen Modeling Program-Global Fit [IPMP-Global Fit]. The results showed that the combination of the no lag phase primary model and the Huang square-root secondary model fitted well with the growth curves to obtain the appropriate kinetic parameters. This combination for predicting UPEC growth kinetics was further validated using it to study additional growth curves at 25°C and 37°C, which showed that the root mean square error, bias factor, and accuracy factor were 0.49-0.59 (log CFU/g), 0.941-0.984, and 1.056-1.063, respectively. In conclusion, the models developed in this study are acceptable and can be used to predict the growth of UPEC in sous-vide chicken breast.


Asunto(s)
Pollos , Comida Rápida , Almacenamiento de Alimentos , Carne , Escherichia coli Uropatógena , Pollos/microbiología , Comida Rápida/microbiología , Cinética , Carne/microbiología , Modelos Biológicos , Temperatura , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales
2.
Phytother Res ; 35(9): 5133-5142, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34327733

RESUMEN

Gastrodia elata Blume has multiple bioactive functions, such as antioxidant and antidepressant activities, immune modulation, neuroplasticity, and neuroprotection. We previously found that the water extract of G. elata exerts antidepressant-like effects in unpredictable chronic mild stress models and animals exposed to the forced swimming test. We aimed to investigate the mechanisms by which the water extract of G. elata protects against subchronic- and mild-social defeat-stress-induced dysbiosis. After a 10-day subchronic and mild-social-defeat-stress program, oral treatment with the water extract of G. elata (500 mg/kg bw) resulted in reversal of depression-like behavior. In addition, monoamine analyses showed that the water extract of G. elata normalized the 5-hydroxyindoleacetic acid:5-HT ratio in the prefrontal cortex and colon and reduced the defeat-stress-induced kynurenine:tryptophan ratio in the colon. After the 10-day subchronic and mild social-defeat-stress program, the water extract of G. elata altered the intestinal microbiome by increasing Actinobacteria levels, modulating intestinal inflammation, and shifting the relative abundances of multiple bacterial groups in the gut. Our results suggest that the water extract of G. elata exhibits a potent antidepressant-like effect via the regulation of monoaminergic neurotransmission and alteration of gut microbiota composition and function, and that it may be an effective prevention for depression.


Asunto(s)
Depresión , Gastrodia , Microbioma Gastrointestinal , Neurotransmisores , Extractos Vegetales , Animales , Depresión/tratamiento farmacológico , Gastrodia/química , Ratones , Neurotransmisores/metabolismo , Extractos Vegetales/farmacología , Derrota Social
3.
J Sci Food Agric ; 101(3): 1193-1201, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32785931

RESUMEN

BACKGROUND: A combination of high-pressure processing (HPP) and antimicrobials is a well-known approach for enhancing the microbiological safety of foods. However, few studies have applied multiple antimicrobials simultaneously with HPP, which could be an additional hurdle for microbial inactivation. The present study applied a full factorial design to investigate the impact of HPP (225-325 MPa; 10-20 min), allyl isothiocyanate (AITC) (0.3-0.9 g kg-1 ) and trans-cinnamaldehyde (tCinn) (1.0-2.0 g kg-1 ) on the inactivation of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and uropathogenic E. coli (UPEC) in ground chicken meat. RESULTS: The regulatory requirement of 5-log reduction was achieved at 305 MPa, 18 min, 0.8 g kg-1 AITC and 1.7 g kg-1 tCinn for STEC O157:H7 and at 293 MPa, 16 min, 0.6 g kg-1 AITC and 1.6 g kg-1 tCinn for UPEC, as specified by response surface analysis and verified via experiments. The surviving population was eliminated by post-treatment storage of 9 days at 10 °C. The developed linear regression models showed r2 > 0.9 for the E. coli inactivation. The developed dimensionless non-linear regression models covered a factorial range slightly wider than the original experimental limit, with probability Pr > F (< 0.0001). CONCLUSION: Simultaneous use of AITC and tCinn reduced not only the necessary concentration of each compound, but also the intensity of high-pressure treatments, at the same time achieving a similar level of microbial inactivation. STEC O157:H7 was found to be more resistant than UPEC to the HPP-AITC-tCinn stress. The developed models may be applied in commercial application to enhance the microbiological safety of ground chicken meat. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Acroleína/análogos & derivados , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Isotiocianatos/farmacología , Carne/microbiología , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Acroleína/farmacología , Animales , Pollos , Conservación de Alimentos/instrumentación , Presión Hidrostática , Carne/análisis , Viabilidad Microbiana/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo
4.
Anal Chem ; 92(22): 14892-14897, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33151059

RESUMEN

Short-chain fatty acids (SCFAs) are small molecules ubiquitous in nature. In mammalian guts, SCFAs are mostly produced by anaerobic intestinal microbiota through the fermentation of dietary fiber. Levels of microbe-derived SCFAs are closely relevant to human health status and indicative to gut microbiota dysbiosis. However, the quantification of SCFA using conventional chromatographic approaches is often time consuming, thus limiting high-throughput screening tests. Herein, we established a novel method to quantify SCFAs by coupling amidation derivatization of SCFAs with paper-loaded direct analysis in real time mass spectrometry (pDART-MS). Remarkably, SCFAs of a biological sample were quantitatively determined within a minute using the pDART-MS platform, which showed a limit of detection at the µM level. This platform was applied to quantify SCFAs in various biological samples, including feces from stressed rats, sera of patients with kidney disease, and fermentation products of metabolically engineered cyanobacteria. Significant differences in SCFA levels between different groups of biological practices were promptly revealed and evaluated. As there is a burgeoning demand for the analysis of SCFAs due to an increasing academic interest of gut microbiota and its metabolism, this newly developed platform will be of great potential in biological and clinical sciences as well as in industrial quality control.


Asunto(s)
Ácidos Grasos Volátiles/análisis , Microbioma Gastrointestinal , Espectrometría de Masas/métodos , Heces/microbiología , Humanos , Factores de Tiempo
5.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8537, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31344762

RESUMEN

The human gut microbiota is a functioning endocrine organ and stands at the intersection between dietary components and health or disease. There are very many microbial metabolites with numerous structures and functions arising from the gut microbial fermentation of foods and become signals for biological communication in the human body. These small molecules can be absorbed and delivered to distant organs through the circulatory system to build the gut-systemic axis. The gut microbial metabolomes are thus believed to play important roles in regulating cardiometabolic health and provide opportunities in mechanistic research and new drug discovery. Measurement of these novel microbial metabolites in clinical samples may serve as a tool for investigating disease biomarkers. In the past decade, the development of untargeted and targeted metabolomics approaches using NMR, LC/MS, and GC/MS has contributed to the exploration of gut microbial metabolomes in cardiometabolic health and disease. Some important targets are currently being translated into clinical applications. In this review article, we introduce an oral carnitine challenge test developed as an example to demonstrate the potential applications in personalized nutrition based on the function of gut microbiota. It is a method taking the gut microbiota as a bioreactor and provides fermentable materials as inputs and measures the outputs of targeted microbial byproducts in the blood or urine. This challenge test may be extended to measure metabolites from microbial fermentation related to other endocrinological or inflammatory diseases. We review current gut metabolome research approaches and propose a gut microbial functional measurement using a challenge test. We suggest that the maturation in measuring gut microbial metabolites may provide an important piece to complete the puzzle of precision medicine.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Metabolómica/métodos , Animales , Bacterias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/microbiología , Fermentación , Humanos , Espectrometría de Masas/métodos , Metaboloma , Investigación Biomédica Traslacional/métodos
6.
Regul Toxicol Pharmacol ; 114: 104657, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32278877

RESUMEN

Water extract of Gastrodia elata Blume (WGE) has great potential as an anti-depressant and could be developed as a functional food. This study aims to assess the safety of WGE using in vitro and in vivo genotoxicity assays and a 28-day oral toxicity study. Results from a bacterial reverse mutation assay (Ames test) using five Salmonella typhimurium strains (TA98, TA100, TA102, TA1535, and TA1537) with or without metabolic activation (S9 system) showed that WGE did not induce mutagenicity. Nor did it induce clastogenic effects in Chinese hamster ovary (CHO-K1) cells with or without S9 activation. Moreover, WGE did not affect the proportion of immature to total erythrocytes or the number of micronuclei in immature erythrocytes of ICR mice. Finally, a dose-dependent 28-day repeated dose toxicity assessment of WGE (2040, 4080, and 8065 mg/kg body weight, p.o.) in mice revealed no adverse effects on behavior, mortality, body weight, haematology, clinical biochemistry, or organ weight. No toxicopathologic lesions were detected following administration of high-dose WGE compared to controls. In conclusion, WGE has no significant mutagenic or toxic properties, and the no-observed-adverse-effect level (NOAEL) of WGE can be defined as at least 8065 mg/kg/day orally for 28 days for male and female mice.


Asunto(s)
Orchidaceae/química , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Agua/química , Administración Oral , Animales , Células CHO , Cricetulus , Femenino , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos ICR , Nivel sin Efectos Adversos Observados , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
7.
Food Microbiol ; 89: 103374, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32138980

RESUMEN

Cooked rice with pork floss (CRPF) wrapped in dried seaweed is one of the most popular ready-to-eat (RTE) foods in many Asian countries, particularly in Taiwan. The products are susceptible to Staphylococcus aureus contamination and temperature abuse during manufacturing, distribution, and storage. The objective of this study was to examine the effect of temperature on its growth in RTE CRPF for use in risk assessment and prevention of staphylococcal food poisoning (SFP). Inoculated CRPF samples were stored at 4, 12, 18, 25, and 35°C, and the change in the populations of S. aureus during storage were analyzed using three primary models to determine specific growth rate (µmax), lag-phase duration (λ), and maximum population density (ymax). The Ratkowsky square-root and Huang square-root (HSR) models were used as the secondary models to describe the effect of temperature on µmax, and a linear and an exponential regression models were used to describe the effect of temperature on λ and ymax, respectively. The model performance was evaluated by the root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af) when appropriate. Results showed that three primary models were suitable for describing the growth curves, with RMSE ≤ 0.3 (log MPN/g). Using µmax obtained from the Huang model, the minimum growth temperature (Tmin) estimated by the HSR model was 7.0°C, well in agreement with the reported Tmin. The combination of primary and secondary models for predicting S. aureus growth was validated by additional growth curves at 30°C, which showed that the RMSE was 0.6 (log MPN/g). Therefore, the developed models were acceptable for predicting the growth of S. aureus in CRPF under likely temperature abuse conditions and can be applied to assess the risk of S. aureus in CRPF and design temperature controls to reduce the risk of SFP.


Asunto(s)
Inocuidad de los Alimentos , Productos de la Carne/análisis , Staphylococcus aureus/crecimiento & desarrollo , Temperatura , Animales , Manipulación de Alimentos , Modelos Biológicos , Oryza , Porcinos
8.
Gut ; 68(8): 1439-1449, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30377191

RESUMEN

OBJECTIVE: The gut microbiota-derived metabolite, trimethylamine N-oxide (TMAO) plays an important role in cardiovascular disease (CVD). The fasting plasma TMAO was shown as a prognostic indicator of CVD incident in patients and raised the interest of intervention targeting gut microbiota. Here we develop a clinically applicable method called oral carnitine challenge test (OCCT) for TMAO-related therapeutic drug efforts assessment and personalising dietary guidance. DESIGN: A pharmacokinetic study was performed to verify the design of OCCT protocol. The OCCT was conducted in 23 vegetarians and 34 omnivores to validate gut microbiota TMAO production capacity. The OCCT survey was integrated with gut microbiome, host genotypes, dietary records and serum biochemistry. A humanised gnotobiotic mice study was performed for translational validation. RESULTS: The OCCT showed better efficacy than fasting plasma TMAO to identify TMAO producer phenotype. The omnivores exhibited a 10-fold higher OR to be high TMAO producer than vegetarians. The TMAO-associated taxa found by OCCT in this study were consistent with previous animal studies. The TMAO producer phenotypes were also reproduced in humanised gnotobiotic mice model. Besides, we found the faecal CntA gene was not associated with TMAO production; therefore, other key relevant microbial genes might be involved. Finally, we demonstrated the urine TMAO exhibited a strong positive correlation with plasma TMAO (r=0.92, p<0.0001) and improved the feasibility of OCCT. CONCLUSION: The OCCT can be used to identify TMAO-producer phenotype of gut microbiota and may serve as a personal guidance in CVD prevention and treatment. TRIAL REGISTRATION NUMBER: NCT02838732; Results.


Asunto(s)
Carnitina/farmacología , Disbiosis , Conducta Alimentaria/fisiología , Microbioma Gastrointestinal/fisiología , Metilaminas , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Carnitina/metabolismo , Dieta/métodos , Disbiosis/diagnóstico , Disbiosis/metabolismo , Humanos , Metilaminas/metabolismo , Metilaminas/farmacocinética , Ratones , Oxidantes/metabolismo , Oxidantes/farmacocinética , Pronóstico , Eliminación Renal/fisiología
9.
J Formos Med Assoc ; 118(2): 545-555, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29490879

RESUMEN

Although great interest has been displayed by researchers in the contribution of gut microbiota to human health, there is still no standard protocol with consensus to guarantee the sample quality of metagenomic analysis. Here we reviewed existing methodology studies and present suggestions for optimizing research pipeline from fecal sample collection to DNA extraction. First, we discuss strategies of clinical metadata collection as common confounders for microbiome research. Second, we propose general principles for freshly collected fecal sample and its storage and share a DIY stool collection kit protocol based on the manual procedure of Human Microbiome Project (HMP). Third, we provide a useful information of collection kit with DNA stabilization buffers and compare their pros and cons for multi-omic study. Fourth, we offer technical strategies as well as information of novel tools for sample aliquoting before long-term storage. Fifth, we discuss the substantial impact of different DNA extraction protocols on technical variations of metagenomic analysis. And lastly, we point out the limitation of current methods and the unmet needs for better quality control of metagenomic analysis. We hope the information provided here will help investigators in this exciting field to advance their studies while avoiding experimental artifacts.


Asunto(s)
ADN/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Humanos , Metagenómica , Juego de Reactivos para Diagnóstico , Análisis de Secuencia de ADN
10.
Environ Toxicol ; 32(11): 2352-2359, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28741790

RESUMEN

Melanoma is the leading cause of death from skin disease due to its propensity for metastasis. Studies have shown that integrin-mediated focal adhesion kinase (FAK) signal pathway is implicated in cell proliferation, survival and metastasis of tumor cells. Our previous results indicated that diallyl trisulfide (DATS) provided its antimelanoma activity via inducing cell cycle arrest and apoptosis. The aim of this study was to explore DATS mediated antimetastatic effect and the corresponding mechanism in human melanoma A375 cells. We found that DATS exhibited an inhibitory effect on the abilities of migration and invasion in A375 cells under noncytotoxic concentrations analyzed by wound healing assays and Matrigel invasion chamber system. DATS attenuated invasion of A375 cells with characteristic of decreased activities and protein expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Moreover, DATS exerted an inhibitory effect on cell adhesion of A375 cells, which is in correlation with the change in integrin signaling pathway. Results of Western blotting showed that DATS decreased the levels of several integrin subunits, including α4, α5, αv, ß1, ß3 and ß4. Subsequently, DATS induced a strong decrease in total FAK, phosphorylated FAK Tyr-397,-576, -577, and disorganized F-actin stress fibers, resulting in a nonmigratory phenotype. These results suggest that the antimetastatic potential of DATS for human melanoma cells might be due to the disruption of integrin/FAK signaling pathway.


Asunto(s)
Compuestos Alílicos/farmacología , Antineoplásicos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrinas/metabolismo , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Sulfuros/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fosforilación , Transducción de Señal , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/ultraestructura
11.
BMC Complement Altern Med ; 16(1): 310, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553852

RESUMEN

BACKGROUND: A newly defined Cordyceps species, Ophiocordyceps formosana (O. formosana) has been implicated in multitudinous bioactivities, including lowering glucose and cholesterol levels and modulating the immune system. However, few literatures demonstrate sufficient evidence to support these proposed functions. Although the use of Cordyceps spp. has been previously addressed to improve insulin insensitivity and improve the detrimental symptoms of depression; its mechanistic nature remains unsettled. Herein, we reveal the effects of O. formosana in ameliorating hyperglycemia accompanied with depression. METHODS: Diabetes was induced in mice by employing streptozotocin(STZ), a chemical that is toxic to insulin-producing ß cells of the pancreas. These streptozotocin (STZ)-induced diabetic mice showed combined symptoms of hyperglycemia and depressive behaviors. Twenty-four STZ-induced mice were randomly divided into 3 groups subjected to oral gavage with 100 µL solution of either PBS or 25 mg/mL Ophiocordyceps formosana extract (OFE) or 2 mg/mL rosiglitazone (Rosi, positive control group). Treatments were administered once per day for 28 days. An additional 6 mice without STZ induction were treated with PBS to serve as the control group. Insulin sensitivity was measured by a glucose tolerance test and levels of adiponectin in plasma and adipose tissue were also quantified. Behavioral tests were conducted and levels of monoamines in various brain regions relating to depression were evaluated. RESULTS: HPLC analysis uncovered three major constituents, adenosine, D-mannitol and cordycepin, within O. formosana similar to other prestigious medicinal Cordyceps spp.. STZ-induced diabetic mice demonstrated decreased body weight and subcutaneous adipose tissue, while these symptoms were recovered in mice receiving OFE treatment. Moreover, the OFE group displayed improved insulin sensitivity and elevated adiponectin within the plasma and adipose tissue. The anti-depressive effect of OFE was observed in various depression-related behavior tests. Concurrently, neurotransmitters, like 5-HT and dopamine in the frontal cortex, striatum and hippocampus were found to be up-regulated in OFE-treated mice. CONCLUSIONS: Our findings illustrated, for the first time, the medicinal merits of O. formosana on Type I diabetes and hyperglycemia-induced depression. OFE were found to promote the expression of adiponectin, which is an adipokine involved in insulin sensitivity and hold anti-depressive effects. In addition, OFE administration also displayed altered levels of neurotransmitters in certain brain regions that may have contributed to its anti-depressive effect. Collectively, this current study provided insights to the potential therapeutic effects of O. formosana extracts in regards to hyperglycemia and its depressive complications.


Asunto(s)
Conducta Animal/efectos de los fármacos , Productos Biológicos/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental , Hiperglucemia/sangre , Hypocreales/química , Adiponectina , Animales , Peso Corporal/efectos de los fármacos , Depresión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Estreptozocina
13.
Microbiol Spectr ; 12(1): e0186823, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38018983

RESUMEN

IMPORTANCE: The link between gut microbiota and diet is crucial in the development of non-alcoholic steatohepatitis (NASH). This study underscores the essential role of a healthy diet in preventing and treating NASH by reversing obesity, lipidemia, and gut microbiota dysbiosis. Moreover, the supplementation of functional food or drug to the diet can provide additional advantages by inhibiting hepatic inflammation through the modulation of the hepatic inflammasome signaling pathway and partially mediating the gut microbiota and lipopolysaccharide signaling pathway. This study highlights the importance of adopting healthy dietary habits in treating NASH and proposes that supplementing with ginger essential oil or obeticholic acid may offer additional benefits. Nonetheless, further clinical studies are necessary to validate these findings.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Saludable , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo
14.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902371

RESUMEN

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Asunto(s)
Disbiosis , Emulsionantes , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Disbiosis/inducido químicamente , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Ratones Endogámicos C57BL , Carboximetilcelulosa de Sodio , Sacarosa/efectos adversos , Sacarosa/administración & dosificación , Sacarosa/metabolismo , Resistencia a la Insulina , Lecitinas
15.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38458343

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Asunto(s)
Ganoderma , Materia Medica , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Materia Medica/farmacología , Espectrometría de Masas en Tándem , Fibrosis , Pulmón
16.
J Ginseng Res ; 47(4): 552-560, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397413

RESUMEN

Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.

17.
J Tradit Complement Med ; 13(1): 30-38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685079

RESUMEN

Background and aim: Cannabis sativa L. is a medicinal plant with a long history. Phyto-cannabinoids are a class of compounds from C. sativa L. with varieties of structures. Endocannabinoids exist in the human body. This article provides an overview of natural cannabinoids (phyto-cannabinoids and endocannabinoids) with an emphasis on their pharmacology activities. Experimental procedure: The keywords "Cannabis sativa L″, "cannabinoids", and "central nervous system (CNS) diseases" were used for searching and collecting pieces of literature from PubMed, ScienceDirect, Web of Science, and Google Scholar. The data were extracted and analyzed to explore the effects of cannabinoids on CNS diseases. Result and conclusion: In this paper, schematic diagrams are used to intuitively show the phyto-cannabinoids skeletons' mutual conversion and pharmacological activities, with special emphasis on their relevant pharmacological activities on central nervous system (CNS) diseases. It was found that the endocannabinoid system and microglia play a crucial role in the treatment of CNS diseases. In the past few years, pharmacological studies focused on Δ9-THC, CBD, and the endocannabinoids system. It is expected to encourage new studies on a more deep exploration of other types of cannabinoids and the mechanism of their pharmacological activities in the future.

18.
J Tradit Complement Med ; 13(2): 107-118, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970453

RESUMEN

Dietary nutrients are associated with the development of cardiovascular disease (CVD) both through traditional pathways (inducing hyperlipidemia and chronic inflammation) and through the emergence of a metaorganism-pathogenesis pathway (through the gut microbiota, its metabolites, and host). Several molecules from food play an important role as CVD risk-factor precursors either themselves or through the metabolism of the gut microbiome. Animal-based dietary proteins are the primary source of CVD risk-factor precursors; however, some plants also possess these precursors, though at relatively low levels compared with animal-source food products. Various medications have been developed to treat CVD through the gut-microbiota-circulation axis, and they exhibit potent effects in CVD treatment. Nevertheless, such medicines are still being improved, and there are many research gaps that need to be addressed. Furthermore, some medications have unpleasant or adverse effects. Numerous foods and herbs impart beneficial effects upon health and disease. In the past decade, many studies have focused on treating and preventing CVD by modulating the gut microbiota and their metabolites. This review provides an overview of the available information, summarizes current research related to the gut-microbiota-heart axis, enumerates the foods and herbs that are CVD-risk precursors, and illustrates how metabolites become CVD risk factors through the metabolism of gut microbiota. Moreover, we present perspectives on the application of foods and herbs-including prebiotics, probiotics, synbiotics, postbiotics, and antibiotic-like substances-as CVD prevention agents to modulate gut microbiota by inhibiting gut-derived CVD risk factors. Taxonomy classification by EVISE: Cardiovascular disease, gut microbiota, herbal medicine, preventive medicine, dietary therapy, nutrition supplements.

19.
Food Funct ; 14(15): 6998-7010, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37435927

RESUMEN

Depression is a severe mental disorder, with approximately 300 million people suffering from it. Recent studies have demonstrated that chronic neuroinflammation is significantly associated with intestinal flora and barrier function in depression. As a therapeutic herb, garlic (Allium sativum L.) has detoxification, antibacterial activity, and antiinflammatory functions; however, its antidepressant effect through gut microbiota and barrier function has not been reported yet. The present study investigated the effect of garlic essential oil (GEO) and its active constituent diallyl disulfide (DADS) on depressive behavior by attenuating the NLRP3 inflammasome, alternating intestinal barrier function and gut microbiota in an unpredictable chronic mild stress (US) model in rats. This study found that dopamine and serotonin turnover rates were reduced significantly with a low dose of GEO (25 mg per kg bw). The GEO groups effectively reversed sucrose preference and increased the total distance traveled in the behavioral test. Moreover, 25 mg per kg bw GEO inhibited the UCMS-induced activated inflammatory response, reflected by reduced expression in the frontal cortex of NLRP3, ASC, caspase-1, and its downstream IL-1ß proteins, as well as the concentration of IL-1ß and TNF-α in the serum. Supplementation with GEO increased the expression of occludin and ZO-1 and the concentration of short-chain fatty acids to influence the impact of intestinal permeability in depressive conditions. The results revealed that GEO administration caused significant changes in the α and ß diversity and abundance of certain bacteria. At the genus level, GEO administration significantly increased the relative abundance, particularly beneficial SCFA-producing bacteria, and may improve depression-like behavior. In conclusion, these results indicated the antidepressant effects of GEO involved in the inflammatory pathway, short-chain fatty acids, intestinal integrity, and intestinal composition.


Asunto(s)
Ajo , Microbiota , Aceites Volátiles , Humanos , Ratas , Animales , Inflamasomas/metabolismo , Depresión/metabolismo , Ajo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Encéfalo/metabolismo , Antidepresivos/farmacología , Ácidos Grasos Volátiles , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones
20.
J Ethnopharmacol ; 302(Pt B): 115872, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36343797

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY: The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS: Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aß-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS: WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aß-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION: WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.


Asunto(s)
Disfunción Cognitiva , Gastrodia , Microbioma Gastrointestinal , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Corticosterona , Depresión/tratamiento farmacológico , Depresión/metabolismo , Dopamina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Serotonina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Sacarosa/uso terapéutico , Agua , Ratones Noqueados para ApoE
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda