Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675497

RESUMEN

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Encefalopatías Metabólicas/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Ansiedad/genética , Ansiedad/inmunología , Ansiedad/fisiopatología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/fisiopatología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Dinámicas Mitocondriales/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de la Célula Individual , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Transcriptoma/genética , Xantina/metabolismo
2.
Cells Tissues Organs ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310851

RESUMEN

INTRODUCTION: Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long, the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. METHODS: Cushion needles with different pipe diameters (1.0, 1.2, 1.4 and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after two weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson's trichrome staining, Verhoeff's Van Gieson staining and hematoxylin and eosin staining while RT-PCR were utilized to assess the total RNA of cytokine interleukin-1ß, interleukin 6, transforming growth factor-beta1 and metalloproteinase 2. RESULTS: Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. CONCLUSIONS: The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms in ascending aortic aneurysm in a more clinically relevant fashion.

3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001600

RESUMEN

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4-forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS-SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS-SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor-binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , G-Cuádruplex , Genoma Humano/genética , Conformación de Ácido Nucleico , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sitio de Iniciación de la Transcripción , Activación Transcripcional/genética
4.
Anal Bioanal Chem ; 415(18): 4061-4077, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119357

RESUMEN

Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.


Asunto(s)
Carbohidratos , Nanopartículas , Fluorescencia , Carbohidratos/química , Sondas Moleculares
5.
Anal Chem ; 93(48): 16113-16122, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34841853

RESUMEN

Discerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change. Such a recognition effect allows for the nanochannel to work in a complex protein digest condition. Further, the implementation of nanofluidic logic functions with the addition of Ca2+ dramatically improves the selectivity of the nanochannel to pY peptide and thus can discern pTyr by the Tyr kinase from pSer by the Ser/Thr kinase through simultaneously monitoring multisite phosphorylation at the same or different peptide substrates in one-pot. This logic sensing platform displays the potential in differentiating Tyr kinase and Ser/Thr kinase and assessing multi-kinase activities in multi-targeted drug design.


Asunto(s)
Procesamiento Proteico-Postraduccional , Treonina , Fosforilación , Fosfotirosina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
6.
Cell Mol Life Sci ; 77(7): 1401-1419, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31485717

RESUMEN

Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.


Asunto(s)
Transdiferenciación Celular , Cóclea/citología , Factores de Transcripción Forkhead/deficiencia , Células Ciliadas Auditivas/citología , Células Laberínticas de Soporte/citología , Proteínas del Tejido Nervioso/deficiencia , Animales , Animales Recién Nacidos , Recuento de Células , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Cóclea/inervación , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Ciliadas Auditivas/ultraestructura , Células Laberínticas de Soporte/ultraestructura , Mecanotransducción Celular , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Sinapsis/metabolismo
7.
Nano Lett ; 20(10): 7043-7051, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32915578

RESUMEN

The control of cell-microenvironment interactions plays a pivotal role in constructing specific scaffolds for tissue engineering. Here, we fabricated a 3D free-standing ordered graphene (3D-OG) network with a precisely defined pattern. When primary cortical cells are cultured on 3D-OG scaffolds, they form well-defined 3D connections. Astrocytes have a more ramified shape similar to that seen in vivo because of the nanosized ripples and wrinkles on the surface of graphene skeleton. Neurons have axons and dendrites aligned along the graphene skeleton, allowing the formation of neuronal networks with highly controlled connections. Neuronal networks have higher electrical activity with functional signaling over a long distance along the graphene skeleton. Our study, for the first time, investigated the geometrical cues on ordered neuronal growth and network formation with the support of graphene in 3D, which therefore advanced the development of customized scaffolds for brain-machine interfaces or neuroprosthetic devices.


Asunto(s)
Grafito , Axones , Neurogénesis , Neuronas , Ingeniería de Tejidos , Andamios del Tejido
8.
J Am Chem Soc ; 142(38): 16324-16333, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32894673

RESUMEN

Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.


Asunto(s)
Nanotecnología , Tirosina/metabolismo , Estructura Molecular , Fosforilación , Tirosina/química
9.
Microvasc Res ; 130: 103990, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32088162

RESUMEN

BACKGROUND: Assessment of the coronary microcirculation remains challenging. OBJECTIVE: we explored the feasibility of evaluating the coronary microvasculature in rats with myocardial infarction (MI) using a three-dimensional visualization technique. METHODS: Animals were divided into the sham operation group (S), MI 45 min group (M45), and MI 180 min group (M180). Opened microvessels were labelled with the fluorescent dye DiI (1, 1'-dioctadecyl-3, 3, 3'3'-tetramethylindo carbocyanine perchlorate) using a heart perfusion method. The microvascular distribution and opening status were observed under laser scanning confocal microscopy, which was adjusted to facilitate evaluation of subjects around 6 to 20 µm. RESULTS: Microvascular vessels (6-20 µm) were successfully labelled by DiI. Intact and clear three-dimensional microvascular structures were observed in myocardium of sham rats and remote non-infarct myocardial tissue of MI rats, while there was almost no microvascular structure in the infarct area of the M45 group, and only a small amount of microvascular visualization was visualized in the infarct area of the M180 group. The microvascular area and microvascular density in M45 group and M180 group in the infarct border zone were significantly lower than corresponding area in S group. CONCLUSION: Three-dimensional visualization of opened coronary microvascular vessels is feasible in DiI-labelled myocardium in this rat MI model. This novel technique might be useful for defining the underlying mechanisms of coronary microvascular diseases and observe the efficacy of various therapy strategies on coronary microvessels.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional , Microscopía Confocal , Microscopía Fluorescente , Microvasos/diagnóstico por imagen , Infarto del Miocardio/diagnóstico por imagen , Animales , Carbocianinas/administración & dosificación , Modelos Animales de Enfermedad , Estudios de Factibilidad , Colorantes Fluorescentes/administración & dosificación , Valor Predictivo de las Pruebas , Ratas Sprague-Dawley
10.
Neural Plast ; 2018: 9506387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853854

RESUMEN

Deafness is a common human disease, which is mainly caused by irreversible damage to hair cells and spiral ganglion neurons (SGNs) in the mammalian cochlea. At present, replacement of damaged or missing hair cells and SGNs by stem cell transplantation therapy is an effective treatment. However, the survival rate of stem cell transplantation is low, with uncontrollable differentiation hindering its application. Most researchers have focused on biochemical factors to regulate the growth and differentiation of stem cells, whereas little study has been performed using physical factors. This review intends to illustrate the current problems in stem cell-based treatment against deafness and to introduce electric field stimulation as a physical factor to regulate stem cell behavior and facilitate stem cell therapy to treat hearing loss in the future.


Asunto(s)
Sordera/terapia , Terapia por Estimulación Eléctrica/métodos , Trasplante de Células Madre/métodos , Animales , Terapia Combinada , Sordera/fisiopatología , Células Ciliadas Auditivas/fisiología , Humanos , Regeneración/fisiología
11.
Neural Plast ; 2016: 2523458, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119785

RESUMEN

Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.


Asunto(s)
Células Ciliadas Auditivas/citología , Pérdida Auditiva Sensorineural/metabolismo , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Animales , Pérdida Auditiva/fisiopatología , Humanos
12.
Neural Plast ; 2016: 5310192, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28116169

RESUMEN

DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions.


Asunto(s)
Pueblo Asiatico/genética , Proteínas de la Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación Missense/genética , Secuencia de Aminoácidos , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Masculino , Linaje , Dominios Proteicos/genética , Análisis de Secuencia de ADN/métodos
13.
Proc Natl Acad Sci U S A ; 109(50): 20413-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184978

RESUMEN

Telomere extension by telomerase is essential for chromosome stability and cell vitality. Here, we report the identification of a splice variant of mammalian heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), hnRNP A2*, which binds telomeric DNA and telomerase in vitro. hnRNP A2* colocalizes with telomerase in Cajal bodies and at telomeres. In vitro assays show that hnRNP A2* actively unfolds telomeric G-quadruplex DNA, exposes 5 nt of the 3' telomere tail and substantially enhances the catalytic activity and processivity of telomerase. The expression level of hnRNP A2* in tissues positively correlates with telomerase activity, and overexpression of hnRNP A2* leads to telomere elongation in vivo. Thus, hnRNP A2* plays a positive role in unfolding telomere G-quadruplexes and in enhancing telomere extension by telomerase.


Asunto(s)
G-Cuádruplex , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Telómero/metabolismo , Empalme Alternativo , Animales , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Hígado/metabolismo , Masculino , Ratones , Modelos Biológicos , Conformación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética
14.
Nat Cell Biol ; 26(6): 917-931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714852

RESUMEN

Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a la X-Box , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Humanos , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Animales , Empalme del ARN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta de Proteína Desplegada , Ratones , Células HeLa , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/genética , Transducción de Señal
15.
Adv Mater ; 36(18): e2308742, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270293

RESUMEN

Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.

16.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984363

RESUMEN

Extrusion-free-form printing of alumina ceramics has the advantages of low cost, short cycle time, and high customization. However, some problems exist, such as the low solid content of ceramic paste and the unsatisfactory mechanical properties of pure alumina ceramics. In this study, SiC nanoparticles were used as a reinforcement phase added to the alumina ceramic matrix. Methylcellulose is used as the binder in the raw material system. Ammonium polyacrylate is used as a dispersant to change the rheological properties of the slurry and increase the solid content of ceramics. SiC nanoparticle-strengthened alumina ceramics were successfully prepared by the extrusion process. The relative settling height and viscosity of ceramic slurries were characterized. The sintering shrinkage of composite ceramics was tested. The flexural strength, fracture toughness, and hardness of the ceramics were characterized. The strengthening and toughening mechanisms of the composite ceramics were further explained by microscopic morphology analysis. Experimental results show that when the content of the dispersant is 1 wt.%, the rheological properties of the slurry are the best. Maximum measured bending strength (227 MPa) and fracture toughness (5.35 MPa·m1/2) were reached by adding 8 wt% SiC nanoparticles; compared with pure alumina ceramics, flexural strength and fracture toughness increased by 42% and 41%, respectively. This study provides a low-cost and effective method for preparing ceramic composite parts.

17.
Int Immunopharmacol ; 121: 110350, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290325

RESUMEN

The use of aspirin is associated with reduced incidence of colorectal cancer (CRC). However, the detailed mechanism remains unclear. In this study, we reported that colon cancer cells treated with aspirin showed the hallmarks of immunogenic cell death (ICD), including surface expression of calreticulin (CRT) and heat shock protein 70 (HSP70). Mechanistically, aspirin induced endoplasmic reticulum (ER) stress in colon cancer cells. In addition, aspirin decreased the expression of the glucose transporters, GLUT3, and reduced the key enzyme of glycolysis, including HK2, PFKM, PKM2 and LDHA. The changes of tumor glycolysis after aspirin treatment were associated with c-MYC downregulation. Moreover, aspirin potentiated the antitumor efficacy of anti-PD-1 antibody and anti-CTLA-4 antibody in CT26 tumors. However, this antitumor activity of aspirin in combination with anti-PD-1 antibody was abolished by the depletion of CD8+ T cells. Vaccination with tumor antigens is one of the strategies for activating T-cell response against tumors. Here, we demonstrated that aspirin-treated tumor cells in combination with tumor antigens (AH1 peptide) or protective substituted peptide (A5 peptide) could be served as a potent vaccine to eradicate tumors. Overall, our data indicated that aspirin can be used as an inducer of ICD for CRC therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias del Colon , Humanos , Línea Celular Tumoral , Muerte Celular Inmunogénica , Antígenos de Neoplasias , Inmunoterapia
18.
Autophagy ; 19(1): 75-91, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471096

RESUMEN

Aminoglycosides exhibit ototoxicity by damaging mitochondria, which in turn generate reactive oxygen species that induce hair cell death and subsequent hearing loss. It is well known that damaged mitochondria are degraded by mitophagy, an important mitochondrial quality control system that maintains mitochondrial homeostasis and ensures cell survival. However, it is unclear whether dysregulation of mitophagy contributes to aminoglycoside-induced hair cell injury. In the current study, we found that PINK1-PRKN-mediated mitophagy was impaired in neomycin-treated hair cells. Our data suggested that mitochondrial recruitment of PRKN and phagophore recognition of damaged mitochondria during mitophagy were blocked following neomycin treatment. In addition, the degradation of damaged mitochondria by lysosomes was significantly decreased as indicated by the mitophagic flux reporter mt-mKeima. Moreover, we demonstrated that neomycin disrupted mitophagy through transcriptional inhibition of Pink1 expression, the key initiator of mitophagy. Moreover, we found that neomycin impaired mitophagy by inducing ATF3 expression. Importantly, treatment with a mitophagy activator could rescue neomycin-treated hair cells by increasing mitophagy, indicating that genetic modulation or drug intervention in mitophagy may have therapeutic potential for aminoglycoside-induced hearing loss.Abbreviations: AAV: adeno-associated virus; ABR: auditory brainstem response; ATF3: activating transcription factor 3; ATOH1/MATH1: atonal bHLH transcription factor 1; BafA1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; COX4I1/COXIV: cytochrome c oxidase subunit 4I1; CTBP2/RIBEYE: C-terminal binding protein 2; DFP: deferiprone; EGFP: enhanced green fluorescent protein; FOXO3: forkhead box O3; GRIA2/GLUR2: glutamate receptor, ionotropic, AMPA2 (alpha 2); HC: hair cell; HSPD1/HSP60: heat shock protein 1 (chaperonin); IHC: inner hair cell; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MYO7A: myosin VIIA; OPTN: optineurin; OMM: outer mitochondrial membrane; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RT-qPCR: real-time quantitative polymerase chain reaction; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling; USP30: ubiquitin specific peptidase 30; XBP1: X-box binding protein 1.


Asunto(s)
Autofagia , Mitofagia , Mitofagia/genética , Aminoglicósidos/toxicidad , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antibacterianos/farmacología , Neomicina/toxicidad , Células Ciliadas Auditivas
19.
Adv Sci (Weinh) ; 10(11): e2206264, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36782337

RESUMEN

Engineered cardiac tissues (ECTs) derived from human induced pluripotent stem cells (hiPSCs) are viable alternatives for cardiac repair, patient-specific disease modeling, and drug discovery. However, the immature state of ECTs limits their clinical utility. The microenvironment fabricated using 3D scaffolds can affect cell fate, and is crucial for the maturation of ECTs. Herein, the authors demonstrate an electric-field-driven (EFD) printed 3D highly ordered microstructure with cell feature size to promote the maturation of ECTs. The simulation and experimental results demonstrate that the EFD jet microscale 3D printing overcomes the jet repulsion without any prior requirements for both conductive and insulating substrates. Furthermore, the 3D highly ordered microstructures with a fiber diameter of 10-20 µm and spacing of 60-80 µm have been fabricated by maintaining a vertical jet, achieving the largest ratio of fiber diameter/spacing of 0.29. The hiPSCs-derived cardiomyocytes formed ordered ECTs with their sarcomere growth along the fiber and developed synchronous functional ECTs inside the 3D-printed scaffold with matured calcium handling compared to the 2D coverslip. Therefore, the EFD jet 3D microscale printing process facilitates the fabrication of scaffolds providing a suitable microenvironment to promote the maturation of ECTs, thereby showing great potential for cardiac tissue engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Miocitos Cardíacos , Diferenciación Celular , Impresión Tridimensional
20.
Materials (Basel) ; 15(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35591415

RESUMEN

Extrusion-based ceramic printing is fast and convenient, but the green body strength is too low, and the application prospect is not high. An extrusion-based printing method of alumina ceramics toughened by short carbon fiber is reported in this paper. The bending strength and fracture toughness of 3D-printed alumina ceramics were improved by adding short carbon fiber. The toughening effects of four carbon fiber lengths (100 µm, 300 µm, 700 µm, and 1000 µm) and six carbon fiber contents (1, 2, 3, 4, 5, and 6 wt%) on ceramics were compared. The experimental results show that when the length of carbon fiber is 700 µm, and carbon fiber is 5 wt%, the toughening effect of fiber is the best, and the uniform distribution of fiber is an effective toughening method. Its bending strength reaches 33.426 ± 1.027 MPa, and its fracture toughness reaches 4.53 ± 0.46 MPa·m1/2. Compared with extrusion-based printed alumina ceramics without fiber, the bending strength and fracture toughness increase by 55.38% and 47.56%, respectively.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda