Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 151(4): 900-911, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141545

RESUMEN

Short hairpin RNA (shRNA)-induced RNAi is used for biological discovery and therapeutics. Dicer, whose normal role is to liberate endogenous miRNAs from their precursors, processes shRNAs into different biologically active siRNAs, affecting their efficacy and potential for off-targeting. We found that, in cells, Dicer induced imprecise cleavage events around the expected sites based on the previously described 5'/3' counting rules. These promiscuous noncanonical cleavages were abrogated when the cleavage site was positioned 2 nt from a bulge or loop. Interestingly, we observed that the ~1/3 of mammalian endogenous pre-miRNAs that contained such structures were more precisely processed by Dicer. Implementing a "loop-counting rule," we designed potent anti-HCV shRNAs with substantially reduced off-target effects. Our results suggest that Dicer recognizes the loop/bulge structure in addition to the ends of shRNAs/pre-miRNAs for accurate processing. This has important implications for both miRNA processing and future design of shRNAs for RNAi-based genetic screens and therapies.


Asunto(s)
ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , MicroARNs , ARN Interferente Pequeño/química , Análisis de Secuencia de ARN
2.
Brain ; 147(7): 2368-2383, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226698

RESUMEN

Loss-of-function variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are responsible for a spectrum of neurodegenerative disorders. In the homozygous state, they cause severe pathologies with early onset dementia, such as Nasu-Hakola disease and behavioural variants of frontotemporal dementia (FTD), whereas heterozygous variants increase the risk of late-onset Alzheimer's disease (AD) and FTD. For over half of TREM2 variants found in families with recessive early onset dementia, the defect occurs at the transcript level via premature termination codons or aberrant splicing. The remaining variants are missense alterations thought to affect the protein; however, the underlying pathogenic mechanism is less clear. In this work, we tested whether these disease-associated TREM2 variants contribute to the pathology via altered splicing. Variants scored by SpliceAI algorithm were tested by a full-size TREM2 splicing reporter assay in different cell lines. The effect of variants was quantified by qRT-/RT-PCR and western blots. Nanostring nCounter was used to measure TREM2 RNA in the brains of NHD patients who carried spliceogenic variants. Exon skipping events were analysed from brain RNA-Seq datasets available through the Accelerating Medicines Partnership for Alzheimer's Disease Consortium. We found that for some Nasu-Hakola disease and early onset FTD-causing variants, splicing defects were the primary cause (D134G) or likely contributor to pathogenicity (V126G and K186N). Similar but milder effects on splicing of exons 2 and 3 were demonstrated for A130V, L133L and R136W enriched in patients with dementia. Moreover, the two most frequent missense variants associated with AD/FTD risk in European and African ancestries (R62H, 1% in Caucasians and T96K, 12% in Africans) had splicing defects via excessive skipping of exon 2 and overproduction of a potentially antagonistic TREM2 protein isoform. The effect of R62H on exon 2 skipping was confirmed in three independent brain RNA-Seq datasets. Our findings revealed an unanticipated complexity of pathogenic variation in TREM2, in which effects on post-transcriptional gene regulation and protein function often coexist. This necessitates the inclusion of computational and experimental analyses of splicing and mRNA processing for a better understanding of genetic variation in disease.


Asunto(s)
Enfermedad de Alzheimer , Glicoproteínas de Membrana , Empalme del ARN , Receptores Inmunológicos , Humanos , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/genética , Empalme del ARN/genética , Demencia Frontotemporal/genética , Demencia/genética , Predisposición Genética a la Enfermedad/genética
3.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378122

RESUMEN

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/genética , Caenorhabditis elegans/genética , Tauopatías/genética , Enfermedad de Alzheimer/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
4.
Genome Res ; 31(8): 1313-1324, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34244228

RESUMEN

There are more than 55,000 variable number tandem repeats (VNTRs) in the human genome, notable for both their striking polymorphism and mutability. Despite their role in human evolution and genomic variation, they have yet to be studied collectively and in detail, partially owing to their large size, variability, and predominant location in noncoding regions. Here, we examine 467 VNTRs that are human-specific expansions, unique to one location in the genome, and not associated with retrotransposons. We leverage publicly available long-read genomes, including from the Human Genome Structural Variant Consortium, to ascertain the exact nucleotide composition of these VNTRs and compare their composition of alleles. We then confirm repeat unit composition in more than 3000 short-read samples from the 1000 Genomes Project. Our analysis reveals that these VNTRs contain highly structured repeat motif organization, modified by frequent deletion and duplication events. Although overall VNTR compositions tend to remain similar between 1000 Genomes Project superpopulations, we describe a notable exception with substantial differences in repeat composition (in PCBP3), as well as several VNTRs that are significantly different in length between superpopulations (in ART1, PROP1, DYNC2I1, and LOC102723906). We also observe that most of these VNTRs are expanded in archaic human genomes, yet remain stable in length between single generations. Collectively, our findings indicate that repeat motif variability, repeat composition, and repeat length are all informative modalities to consider when characterizing VNTRs and their contribution to genomic variation.


Asunto(s)
Repeticiones de Minisatélite , Nucleótidos , Genoma Humano , Variación Estructural del Genoma , Humanos , Repeticiones de Minisatélite/genética , Polimorfismo Genético
5.
Brain ; 146(2): 507-518, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35949106

RESUMEN

Alzheimer's disease is the most common neurodegenerative disease, characterized by dementia and premature death. Early-onset familial Alzheimer's disease is caused in part by pathogenic variants in presenilin 1 (PSEN1) and presenilin 2 (PSEN2), and alternative splicing of these two genes has been implicated in both familial and sporadic Alzheimer's disease. Here, we leveraged targeted isoform-sequencing to characterize thousands of complete PSEN1 and PSEN2 transcripts in the prefrontal cortex of individuals with sporadic Alzheimer's disease, familial Alzheimer's disease (carrying PSEN1 and PSEN2 variants), and controls. Our results reveal alternative splicing patterns of PSEN2 specific to sporadic Alzheimer's disease, including a human-specific cryptic exon present in intron 9 of PSEN2 as well as a 77 bp intron retention product before exon 6 that are both significantly elevated in sporadic Alzheimer's disease samples, alongside a significantly lower percentage of canonical full-length PSEN2 transcripts versus familial Alzheimer's disease samples and controls. Both alternatively spliced products are predicted to generate a prematurely truncated PSEN2 protein and were corroborated in an independent cerebellum RNA-sequencing dataset. In addition, our data in PSEN variant carriers is consistent with the hypothesis that PSEN1 and PSEN2 variants need to produce full-length but variant proteins to contribute to the onset of Alzheimer's disease, although intriguingly there were far fewer full-length transcripts carrying pathogenic alleles versus wild-type alleles in PSEN2 variant carriers. Finally, we identify frequent RNA editing at Alu elements present in an extended 3' untranslated region in PSEN2. Overall, this work expands the understanding of PSEN1 and PSEN2 variants in Alzheimer's disease, shows that transcript differences in PSEN2 may play a role in sporadic Alzheimer's disease, and suggests novel mechanisms of Alzheimer's disease pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Mutación , Presenilina-2/genética , Presenilina-1/genética
6.
Am J Hum Genet ; 107(3): 445-460, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750315

RESUMEN

Tandem repeats are proposed to contribute to human-specific traits, and more than 40 tandem repeat expansions are known to cause neurological disease. Here, we characterize a human-specific 69 bp variable number tandem repeat (VNTR) in the last intron of WDR7, which exhibits striking variability in both copy number and nucleotide composition, as revealed by long-read sequencing. In addition, greater repeat copy number is significantly enriched in three independent cohorts of individuals with sporadic amyotrophic lateral sclerosis (ALS). Each unit of the repeat forms a stem-loop structure with the potential to produce microRNAs, and the repeat RNA can aggregate when expressed in cells. We leveraged its remarkable sequence variability to align the repeat in 288 samples and uncover its mechanism of expansion. We found that the repeat expands in the 3'-5' direction, in groups of repeat units divisible by two. The expansion patterns we observed were consistent with duplication events, and a replication error called template switching. We also observed that the VNTR is expanded in both Denisovan and Neanderthal genomes but is fixed at one copy or fewer in non-human primates. Evaluating the repeat in 1000 Genomes Project samples reveals that some repeat segments are solely present or absent in certain geographic populations. The large size of the repeat unit in this VNTR, along with our multiplexed sequencing strategy, provides an unprecedented opportunity to study mechanisms of repeat expansion, and a framework for evaluating the roles of VNTRs in human evolution and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Evolución Molecular , Secuencias Repetidas en Tándem/genética , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Expansión de las Repeticiones de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Repeticiones de Minisatélite/genética , Fenotipo , Especificidad de la Especie
7.
Hum Mol Genet ; 22(12): 2350-60, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23446633

RESUMEN

The mutations P56S and T46I in the gene encoding vesicle-associated membrane protein-associated protein B/C (VAPB) cause ALS8, a familial form of amyotrophic lateral sclerosis (ALS). Overexpression of mutant forms of VAPB leads to cytosolic aggregates, suggesting a gain of function of the mutant protein. However, recent work suggested that the loss of VAPB function could be the major mechanism leading to ALS8. Here, we used multiple genetic and experimental approaches to study whether VAPB loss of function might be sufficient to trigger motor neuron degeneration. In order to identify additional ALS-associated VAPB mutations, we screened the entire VAPB gene in a cohort of ALS patients and detected two mutations (A145V and S160Δ). To directly address the contribution of VAPB loss of function in ALS, we generated zebrafish and mouse models with either a decreased or a complete loss of Vapb expression. Vapb knockdown in zebrafish led to swimming deficits. Mice knocked-out for Vapb showed mild motor deficits after 18 months of age yet had innervated neuromuscular junctions (NMJs). Importantly, overexpression of VAPB mutations were unable to rescue the motor deficit caused by Vapb knockdown in zebrafish and failed to cause a toxic gain-of-function defect on their own. Thus, Vapb loss of function weakens the motor system of vertebrate animal models but is on its own unable to lead to a complete ALS phenotype. Our findings are consistent with the notion that VAPB mutations constitute a risk factor for motor neuron disease through a loss of VAPB function.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de la Membrana/metabolismo , Mutación Missense , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Secuencia de Bases , Estudios de Cohortes , Femenino , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Pez Cebra
8.
Nucleic Acids Res ; 40(8): 3704-13, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22210886

RESUMEN

RNA interference occurs by two main processes: mRNA site-specific cleavage and non-cleavage-based mRNA degradation or translational repression. Site-specific cleavage is carried out by argonaute-2 (Ago2), while all four mammalian argonaute proteins (Ago1-Ago4) can carry out non-cleavage-mediated inhibition, suggesting that Ago1, Ago3 and Ago4 may have similar but potentially redundant functions. It has been observed that in mammalian tissues, expression of Ago3 and Ago4 is dramatically lower compared with Ago1; however, an optimization of the Ago3 and Ago4 coding sequences to include only the most common codon at each amino acid position was able to augment the expression of Ago3 and Ago4 to levels comparable to that of Ago1 and Ago2. Thus, we examined whether particular sequence features exist in the coding region of Ago3 and Ago4 that may prevent a high level of expression. Swapping specific sub-regions of wild-type and optimized Ago sequence identified the portion of the coding region (nucleotides 1-1163 for Ago-3 and 1-1494 for Ago-4) that is most influential for expression. This finding has implications for the evolutionary conservation of Ago proteins in the mammalian lineage and the biological role that potentially redundant Ago proteins may have.


Asunto(s)
Proteínas Argonautas/genética , Factores Eucarióticos de Iniciación/genética , Regiones no Traducidas 3' , Animales , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Línea Celular , Codón , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Ratones , Interferencia de ARN , ARN Mensajero/metabolismo
9.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562829

RESUMEN

The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.

10.
Bioinform Adv ; 3(1): vbad058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168281

RESUMEN

Summary: TRviz is an open-source Python library for decomposing, encoding, aligning and visualizing tandem repeat (TR) sequences. TRviz takes a collection of alleles (TR containing sequences) and one or more motifs as input and generates a plot showing the motif composition of the TR sequences. Availability and implementation: TRviz is an open-source Python library and freely available at https://github.com/Jong-hun-Park/trviz. Detailed documentation is available at https://trviz.readthedocs.io. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

11.
Exp Mol Med ; 55(7): 1293-1304, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37430089

RESUMEN

Transfer RNAs (tRNAs) play an essential role in mRNA translation by delivering amino acids to growing polypeptide chains. Recent data demonstrate that tRNAs can be cleaved by ribonucleases, and the resultant cleavage products, tRNA-derived small RNAs (tsRNAs), have crucial roles in physiological and pathological conditions. They are classified into more than six types according to their size and cleavage positions. Since the initial discovery of the physiological functions of tsRNAs more than a decade ago, accumulating data have demonstrated that tsRNAs play critical roles in gene regulation and tumorigenesis. These tRNA-derived molecules have various regulatory functions at the transcriptional, post-transcriptional, and translational levels. More than a hundred types of modifications are found on tRNAs, affecting the biogenesis, stability, function, and biochemical properties of tsRNA. Both oncogenic and tumor suppressor functions have been reported for tsRNAs, which play important roles in the development and progression of various cancers. Abnormal expression patterns and modification of tsRNAs are associated with various diseases, including cancer and neurological disorders. In this review, we will describe the biogenesis, versatile gene regulation mechanisms, and modification-mediated regulation mechanisms of tsRNA as well as the expression patterns and potential therapeutic roles of tsRNAs in various cancers.


Asunto(s)
Neoplasias , ARN de Transferencia , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Neoplasias/genética , Biosíntesis de Proteínas , Regulación de la Expresión Génica , Biología
12.
Emerg Top Life Sci ; 7(3): 361-381, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37905568

RESUMEN

Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.


Asunto(s)
ADN , Secuencias Repetidas en Tándem , Humanos , Secuencias Repetidas en Tándem/genética , Epigénesis Genética
13.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808839

RESUMEN

All humans carry a small fraction of archaic ancestry across the genome, the legacy of gene flow from Neanderthals, Denisovans, and other hominids into the ancestors of modern humans. While the effects of Neanderthal ancestry on human fitness and health have been explored more thoroughly, there are fewer examples of adaptive introgression of Denisovan variants. Here, we study the gene MUC19, for which some modern humans carry a Denisovan-like haplotype. MUC19 is a mucin, a glycoprotein that forms gels with various biological functions, from lubrication to immunity. We find the diagnostic variants for the Denisovan-like MUC19 haplotype at high frequencies in admixed Latin American individuals among global population, and at highest frequency in 23 ancient Indigenous American individuals, all predating population admixture with Europeans and Africans. We find that some Neanderthals--Vindija and Chagyrskaya--carry the Denisovan-like MUC19 haplotype, and that it was likely introgressed into human populations through Neanderthal introgression rather than Denisovan introgression. Finally, we find that the Denisovan-like MUC19 haplotype carries a higher copy number of a 30 base-pair variable number tandem repeat relative to the Human-like haplotype, and that copy numbers of this repeat are exceedingly high in American populations. Our results suggest that the Denisovan-like MUC19 haplotype served as the raw genetic material for positive selection as American populations adapted to novel environments during their movement from Beringia into North and then South America.

14.
Brain ; 134(Pt 2): 602-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21115467

RESUMEN

Autosomal dominant sensory ataxia is a rare genetic condition that results in a progressive ataxia that is caused by degeneration of the posterior columns of the spinal cord. To date only two families have been clinically ascertained with this condition, both from Maritime Canada. We previously mapped both families to chromosome 8p12-8q12 and have now screened the majority of annotated protein-coding genes in the shared haplotype region by direct DNA sequencing. We have identified a putative pathogenic mutation in the gene encoding ring-finger protein RNF170, a potential ubiquitin ligase. This mutation is a rare non-synonymous change in a well-conserved residue and is predicted to be pathogenic by SIFT, PolyPhen, PANTHER and Align-GVD. Microinjection of wild-type or mutant orthologous messenger RNAs into zebrafish (Danio rerio) embryos confirmed that the mutation dominantly disrupts normal embryonic development. Together these results suggest that the mutation in RNF170 is causal for the sensory ataxia in these families.


Asunto(s)
Ataxia/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Ataxia/metabolismo , Muerte Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Técnicas de Silenciamiento del Gen/métodos , Humanos , Oligodesoxirribonucleótidos Antisentido/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
15.
Neurol Genet ; 8(3): e669, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35620141

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most prominent motor neuron disease in humans. Its etiology consists of progressive motor neuron degeneration resulting in a rapid decline in motor function starting in the limbs or bulbar muscles and eventually fatally impairing central organs most typically resulting in loss of respiration. Pathogenic variants in 4 main genes, SOD1, TARDBP, FUS, and C9orf72, have been well characterized as causative for more than a decade now. However, these only account for a small fraction of all ALS cases. In this review, we highlight many additional variants that appear to be causative or confer increased risk for ALS, and we reflect on the technologies that have led to these discoveries. Next, we call attention to new challenges and opportunities for ALS and suggest next steps to increase our understanding of ALS genetics. Finally, we conclude with a synopsis of gene therapy paradigms and how increased understanding of ALS genetics can lead us to developing effective treatments. Ultimately, a consolidated update of the field can provide a launching point for researchers and clinicians to improve our search for ALS-related genes, defining pathogenic mechanisms, form diagnostics, and develop therapies.

16.
Front Cell Dev Biol ; 9: 728707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660586

RESUMEN

Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.

17.
Acta Neuropathol Commun ; 9(1): 43, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726851

RESUMEN

SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.


Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Dendritas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Empalme Alternativo/genética , Autopsia , Encéfalo/metabolismo , Cerebelo/patología , Estudios de Cohortes , Dendritas/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL/análisis , Masculino , Proteínas de Transporte de Membrana/análisis , Neuronas/metabolismo , Bancos de Tejidos
18.
J Neurol Neurosurg Psychiatry ; 81(5): 572-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20460594

RESUMEN

BACKGROUND: 153 mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been claimed to be associated with amyotrophic lateral sclerosis (ALS) in familial and sporadic ALS in an autosomal dominant or autosomal recessive pattern with complete or reduced penetrance. The authors now report four ALS pedigrees from Finland, France, Germany and Sweden with either the D90A or E100K SOD1 mutations in some but not all affected members. After re-collecting DNA, the non-segregation of the SOD1 mutations with disease was confirmed by three independent laboratories using different PCR primers: while some of the affected patients carry SOD1 mutations, other affected family members have two wildtype/normal SOD1 genes. In addition, some unaffected members within the same families are carriers of SOD1 gene mutations. To exclude other known genetic causes, the authors ruled out mutations within the genes coding for VAPB, ANG, TDP43, FUS and DCTN1 in affected individuals in the four pedigrees. CONCLUSIONS: The authors find that the D90A and E100K SOD1 gene mutations found in some patients are not the exclusive cause of ALS in these pedigrees. Whether this is also the case for the other 151 SOD1 mutations reported in ALS pedigrees is unknown. The findings have consequences for genetic testing in clinical practice when diagnosing ALS and for genetic counselling in ALS. Some SOD1 mutations may be part of an oligo- or epigentic pattern of inheritance. Such a pattern of inheritance may model other oligo- or polygenetic traits responsible for other forms of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación/genética , Superóxido Dismutasa/genética , Adulto , Edad de Inicio , Anciano , Alelos , Esclerosis Amiotrófica Lateral/patología , ADN/genética , Progresión de la Enfermedad , Femenino , Finlandia , Genes Dominantes/genética , Genes Recesivos/genética , Alemania , Haplotipos , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación/fisiología , Mutación Missense , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa-1 , Suecia
19.
Amyotroph Lateral Scler ; 11(4): 389-91, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20001489

RESUMEN

DPP6 and FGGY genes have been recently associated with an increased susceptibility for sporadic amyotrophic lateral sclerosis. Here, we evaluated the role of these genes in ALS pathogenesis by undertaking a sequence analysis of a cohort of 190 ALS patients from France and Quebec. We did not observe any evidence that mutations in DPP6 and FGGY genes are involved in ALS. Our data indicate that mutations in these genes are unlikely to be a common cause of ALS in the French and French Canadian populations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Canales de Potasio/genética , Proteínas/genética , Canadá , Estudios de Cohortes , Análisis Mutacional de ADN , Frecuencia de los Genes , Genotipo , Humanos , Población Blanca
20.
Mol Ther Nucleic Acids ; 19: 572-580, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31927330

RESUMEN

Gene knockdown using short hairpin RNAs (shRNAs) is a promising strategy for targeting dominant mutations; however, delivering too much shRNA can disrupt the processing of endogenous microRNAs (miRNAs) and lead to toxicity. Here, we sought to understand the effect that excessive shRNAs have on muscle miRNAs by treating mice with recombinant adeno-associated viral vectors (rAAVs) that produce shRNAs with 19-nt or 21-nt stem sequences. Small RNA sequencing of their muscle and liver tissues revealed that shRNA expression was highest in the heart, where mice experienced substantial cardiomyopathy when shRNAs accumulated to 51.2% ± 13.7% of total small RNAs. With the same treatment, shRNAs in other muscle tissues reached only 12.1% ± 5.0% of total small RNAs. Regardless of treatment, the predominant heart miRNAs remained relatively stable across samples. Instead, the lower-expressed miR-451, one of the few miRNAs processed independently of Dicer, changed in relation to shRNA level and toxicity. Our data suggest that a protective mechanism exists in cardiac tissue for maintaining the levels of most miRNAs in response to shRNA delivery, in contrast with what has been shown in the liver. Quantifying miRNA profiles after excessive shRNA delivery illuminates the host response to rAAV-shRNA, allowing for safer and more robust therapeutic gene knockdown.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda