RESUMEN
Biological nitrogen removal processes provide effective means to mitigate nitrogen-related issues in wastewater treatment. Previous studies have highlighted the collaborative efficiency between sulfur autotrophic denitrification and Anammox processes. However, the trigger point induced the combination of nitrogen and sulfur metabolism is unclear. In this study, elemental sulfur (S0) was introduced to Anammox system to figure out the performance and mechanism of S0-mediated autotrophic denitrification and Anammox (S0SAD-A) systems. The results showed that the nitrogen removal performance of the Anammox reactor decreased with the increasing concentrations of NH4+-N and NO2--N in influent, denitrification occurred when NH4+-N concentration reached 100 mg/L. At stage â ³ (150 mg/L NH4+-N), the total nitrogen removal efficiency in S0SAD-A system (95.99%) was significantly higher than that in the Anammox system (77.22%). Throughout a hydraulic retention time, the consumption rate of NH4+-N in S0SAD-A was faster than that in Anammox reactor. And there existed a nitrate-concentration peak in S0SAD-A system. Metagenomic sequencing was performed to reveal functional microbes as well as key genes involved in sulfur and nitrogen metabolism. The results showed that the introduction of S0 elevated the abundance of Ca. Brocadia. Moreover, the relative abundance of Anammox genes, such as hao, hzsA and hzsC were also stimulated by sulfur. Notably, unclassified members in Rhodocyclaceae acted as the primary contributor to key genes involved in the sulfur metabolism. Overall, the interactions between Anammox and denitrification were stimulated by sulfur metabolism. Our study shed light on the potential significance of Rhodocyclaceae members in the S0SAD-A process and disclosed the relationship between anammox and denitrification.
RESUMEN
To realize a simultaneous partial nitrification, ANAMMOX (anaerobic ammonium oxidation), and denitrification (SNAD) process treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor (CFBR), we first gradually increased the influent ammonium (NH4+-N) concentration, and then enhanced the ADLSW ratio in the influent during operation; dissolved oxygen (DO) was controlled at (0.4±0.1) mg·L-1 by adjusting the air flow rate, and the temperature was kept at (30±1)â. Meanwhile, high-throughput sequencing and quantitative PCR (polymerase chain reaction) techniques were used to analyze the bacterial community shifts and the amount of dominant nitrogen removal bacteria. The results demonstrated that a successful start-up of the SNAD process was accomplished in 150 d, and replacement of the actual biogas slurry was completed in 298 d. The effluent (NO3--N+NO2--N)/ΔNH4+-N value was less than 0.11, and the average removal rates of NH4+-N and TN (total nitrogen) increased to 63.26% and 55.71%, respectively. Moreover, high-throughput sequencing results demonstrated that the dominant microbial populations at phylum level were Chloroflexi (with a relative abundance of 50.78%), Proteobacteria (13.34%), and Planctomycetes (9.26%). The relative abundance of Nitrosomonas increased from 1.55% to 1.98%. In addition, the relative abundance of Candidatus_Brocadia and Candidatus_Kuenenia increased from 0.01% and (<0.01%) to 4.66% and 4.18%, respectively, and the relative abundance of Denitratisoma increased from (<0.01%) to 2.06%. Meanwhile, qPCR analysis showed that the amounts of ammonia-oxidizing bacteria, ANAMMOX, and denitrifying bacteria increased significantly compared with the inoculated sludge. An efficient and stable nitrogen removal rate can be achieved, and the follow-up processing cost can be reduced, by application of the SNAD treatment process for ADLSW.