Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(19): 4954-4959, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439027

RESUMEN

Two-thiouridine (s2U) at position 54 of transfer RNA (tRNA) is a posttranscriptional modification that enables thermophilic bacteria to survive in high-temperature environments. s2U is produced by the combined action of two proteins, 2-thiouridine synthetase TtuA and 2-thiouridine synthesis sulfur carrier protein TtuB, which act as a sulfur (S) transfer enzyme and a ubiquitin-like S donor, respectively. Despite the accumulation of biochemical data in vivo, the enzymatic activity by TtuA/TtuB has rarely been observed in vitro, which has hindered examination of the molecular mechanism of S transfer. Here we demonstrate by spectroscopic, biochemical, and crystal structure analyses that TtuA requires oxygen-labile [4Fe-4S]-type iron (Fe)-S clusters for its enzymatic activity, which explains the previously observed inactivation of this enzyme in vitro. The [4Fe-4S] cluster was coordinated by three highly conserved cysteine residues, and one of the Fe atoms was exposed to the active site. Furthermore, the crystal structure of the TtuA-TtuB complex was determined at a resolution of 2.5 Å, which clearly shows the S transfer of TtuB to tRNA using its C-terminal thiocarboxylate group. The active site of TtuA is connected to the outside by two channels, one occupied by TtuB and the other used for tRNA binding. Based on these observations, we propose a molecular mechanism of S transfer by TtuA using the ubiquitin-like S donor and the [4Fe-4S] cluster.


Asunto(s)
Proteínas Bacterianas , Proteínas Hierro-Azufre , Ligasas , Thermus thermophilus , Tiouridina/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Ligasas/química , Ligasas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Thermus thermophilus/química , Thermus thermophilus/metabolismo , Tiouridina/química , Tiouridina/metabolismo
2.
Biochem J ; 474(6): 957-969, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28130490

RESUMEN

Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegansC. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteínas Mitocondriales/química , Factor Tu de Elongación Peptídica/química , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/química , Secuencia de Aminoácidos , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Clonación Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Cinética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Trichinella/genética , Trichinella/metabolismo
3.
Genes Cells ; 21(7): 740-54, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27238446

RESUMEN

TrmFO is a N(5) , N(10) -methylenetetrahydrofolate (CH2 THF)-/FAD-dependent tRNA methyltransferase, which synthesizes 5-methyluridine at position 54 (m(5) U54) in tRNA. Thermus thermophilus is an extreme-thermophilic eubacterium, which grows in a wide range of temperatures (50-83 °C). In T. thermophilus, modified nucleosides in tRNA and modification enzymes form a network, in which one modification regulates the degrees of other modifications and controls the flexibility of tRNA. To clarify the role of m(5) U54 and TrmFO in the network, we constructed the trmFO gene disruptant (∆trmFO) strain of T. thermophilus. Although this strain did not show any growth retardation at 70 °C, it showed a slow-growth phenotype at 50 °C. Nucleoside analysis showed increase in 2'-O-methylguanosine at position 18 and decrease in N(1) -methyladenosine at position 58 in the tRNA mixture from the ∆trmFO strain at 50 °C. These in vivo results were reproduced by in vitro experiments with purified enzymes. Thus, we concluded that the m(5) U54 modification have effects on the other modifications in tRNA through the network at 50 °C. (35) S incorporations into proteins showed that the protein synthesis activity of ∆trmFO strain was inferior to the wild-type strain at 50 °C, suggesting that the growth delay at 50 °C was caused by the inferior protein synthesis activity.


Asunto(s)
ARN de Transferencia/genética , ARNt Metiltransferasas/genética , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Ácido Fólico/genética , Ácido Fólico/metabolismo , Guanosina/análogos & derivados , Guanosina/genética , Mutación , Temperatura , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Uridina/análogos & derivados , Uridina/genética , ARNt Metiltransferasas/metabolismo
4.
J Biol Chem ; 288(11): 7645-7652, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23362261

RESUMEN

Non-universal genetic codes are frequently found in animal mitochondrial decoding systems. In squid mitochondria, four codons deviate from the universal genetic code, namely AUA, UGA, and AGA/AGG (AGR) for Met, Trp, and Ser, respectively. To understand the molecular basis for establishing the non-universal genetic code, we isolated and analyzed five mitochondrial tRNAs from a squid, Loligo bleekeri. Primary structures of the isolated tRNAs, including their post-transcriptional modifications, were analyzed by mass spectrometry. tRNA(Met)(AUR) possessed an unmodified cytidine at the first position of the anticodon, suggesting that the AUA codon is deciphered by CAU anticodon via non-canonical A-C pairing. We identified 5-taurinomethyluridine (τm(5)U) at the first position of the anticodon in tRNA(Trp)(UGR). τm(5)U enables tRNA(Trp) to decipher UGR codons as Trp. In addition, 5-taurinomethyl-2-thiouridine (τm(5)s(2)U) was found in mitochondrial tRNAs for Leu(UUR) and Lys in L. bleekeri. This is the first discovery of τm(5)U and τm(5)s(2)U in molluscan mitochondrial tRNAs.


Asunto(s)
Loligo/genética , Mitocondrias/metabolismo , Aminoácidos/química , Animales , Anticodón/genética , Codón , Citidina/genética , Código Genético , Espectrometría de Masas/métodos , Modelos Genéticos , Conformación de Ácido Nucleico , Nucleósidos/metabolismo , Estructura Secundaria de Proteína , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia/metabolismo
5.
J Biol Chem ; 286(41): 35494-35498, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21873425

RESUMEN

Variations in the genetic code are found frequently in mitochondrial decoding systems. Four non-universal genetic codes are employed in ascidian mitochondria: AUA for Met, UGA for Trp, and AGA/AGG(AGR) for Gly. To clarify the decoding mechanism for the non-universal genetic codes, we isolated and analyzed mitochondrial tRNAs for Trp, Met, and Gly from an ascidian, Halocynthia roretzi. Mass spectrometric analysis identified 5-taurinomethyluridine (τm(5)U) at the anticodon wobble positions of tRNA(Met)(AUR), tRNA(Trp)(UGR), and tRNA(Gly)(AGR), suggesting that τm(5)U plays a critical role in the accurate deciphering of all four non-universal codes by preventing the misreading of pyrimidine-ending near-cognate codons (NNY) in their respective family boxes. Acquisition of the wobble modification appears to be a prerequisite for the genetic code alteration.


Asunto(s)
Anticodón/metabolismo , Mitocondrias/metabolismo , ARN/metabolismo , Taurina/metabolismo , Uridina/metabolismo , Urocordados/metabolismo , Animales , Anticodón/genética , Mitocondrias/genética , ARN/genética , ARN Mitocondrial , Taurina/genética , Uridina/genética , Urocordados/genética
6.
EMBO J ; 27(24): 3267-78, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19037260

RESUMEN

2-Thioribothymidine (s(2)T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s(2)T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s(2)T in Thermus thermophilus and examined in vitro s(2)T formation by TtuC and previously identified s(2)T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s(2)T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB-TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Coenzimas/biosíntesis , ARN de Transferencia/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/metabolismo , Tiouridina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Eliminación de Gen , Metaloproteínas/biosíntesis , Modelos Biológicos , Cofactores de Molibdeno , Pteridinas , Thermus thermophilus/genética , Tiamina/biosíntesis
7.
Nucleic Acids Res ; 37(5): 1616-27, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19151083

RESUMEN

Mitochondrial (mt) tRNA(Met) has the unusual modified nucleotide 5-formylcytidine (f(5)C) in the first position of the anticodon. This tRNA must translate both AUG and AUA as methionine. By constructing an in vitro translation system from bovine liver mitochondria, we examined the decoding properties of the native mt tRNA(Met) carrying f(5)C in the anticodon compared to a transcript that lacks the modification. The native mt Met-tRNA could recognize both AUA and AUG codons as Met, but the corresponding synthetic tRNA(Met) lacking f(5)C (anticodon CAU), recognized only the AUG codon in both the codon-dependent ribosomal binding and in vitro translation assays. Furthermore, the Escherichia coli elongator tRNA(Met)(m) with the anticodon ac(4)CAU (ac(4)C = 4-acetylcytidine) and the bovine cytoplasmic initiator tRNA(Met) (anticodon CAU) translated only the AUG codon for Met on mt ribosome. The codon recognition patterns of these tRNAs were the same on E. coli ribosomes. These results demonstrate that the f(5)C modification in mt tRNA(Met) plays a crucial role in decoding the nonuniversal AUA codon as Met, and that the genetic code variation is compensated by a change in the tRNA anticodon, not by a change in the ribosome. Base pairing models of f(5)C-G and f(5)C-A based on the chemical properties of f(5)C are presented.


Asunto(s)
Codón/química , Citidina/análogos & derivados , Mitocondrias/genética , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/química , ARN/química , Animales , Anticodón/química , Emparejamiento Base , Secuencia de Bases , Bovinos , Codón Iniciador/química , Citidina/química , Escherichia coli/genética , Metionina/metabolismo , Datos de Secuencia Molecular , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-20075606

RESUMEN

In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.


Asunto(s)
Código Genético/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Molecular , Humanos , Datos de Secuencia Molecular , ARN de Transferencia/genética
9.
Seikagaku ; 86(5): 547, 2014 Oct.
Artículo en Japonés | MEDLINE | ID: mdl-25509319

Asunto(s)
Motivación , Humanos
10.
Biochem J ; 399(2): 249-56, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16859488

RESUMEN

Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.


Asunto(s)
Ascaris suum , Mitocondrias/genética , Mitocondrias/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN de Helminto/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Secuencia de Aminoácidos , Animales , Ascaris suum/citología , Ascaris suum/genética , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/metabolismo , Reactivos de Enlaces Cruzados , Etilnitrosourea , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/química , ARN de Helminto/química , ARN de Helminto/genética , ARN de Transferencia de Metionina/genética , Alineación de Secuencia , Eliminación de Secuencia
11.
Nucleic Acids Res ; 33(5): 1653-61, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15781491

RESUMEN

The mitochondria of the nematode Ascaris suum have tRNAs with unusual secondary structures that lack either the T-arm or D-arm found in most other organisms. Of the twenty-two tRNA species present in the mitochondria of A.suum, twenty lack the entire T-arm and two serine tRNAs lack the D-arm. To understand how such unusual tRNAs work in the nematode mitochondrial translation system, we analyzed post-transcriptional modifications of 11 mitochondrial tRNA species purified from A.suum, 10 of which lacked a T-arm and one of which lacked a D-arm. The most characteristic feature of nematode mitochondrial tRNAs lacking a T-arm was the presence of 1-methyladenosine at position 9 (m1A9). Synthesis of T-armless tRNAs with or without the modified nucleoside showed that T-armless tRNAs without the modification had much lower aminoacylation and EF-Tu-binding activities than native tRNAs. The addition of a single methyl group to A9 of these tRNAs was sufficient to restore nearly native levels of aminoacylation and EF-Tu-binding activity as well as tertiary structure, suggesting that m1A9 is a key residue for the activity of T-armless tRNAs. Thus, m1A9 is indispensable for the structure and function of T-armless tRNAs of nematode mitochondrial origin.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/química , Ascaris suum/genética , ARN de Transferencia/química , ARN/química , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Factor Tu de Elongación Peptídica/metabolismo , ARN/metabolismo , ARN de Helminto/química , ARN de Helminto/metabolismo , ARN Mitocondrial , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia
12.
Nucleic Acids Res ; 33(15): 4683-91, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16113240

RESUMEN

Nematode mitochondria expresses two types of extremely truncated tRNAs that are specifically recognized by two distinct elongation factor Tu (EF-Tu) species named EF-Tu1 and EF-Tu2. This is unlike the canonical EF-Tu molecule that participates in the standard protein biosynthesis systems, which basically recognizes all elongator tRNAs. EF-Tu2 specifically recognizes Ser-tRNA(Ser) that lacks a D arm but has a short T arm. Our previous study led us to speculate the lack of the D arm may be essential for the tRNA recognition of EF-Tu2. However, here, we showed that the EF-Tu2 can bind to D arm-bearing Ser-tRNAs, in which the D-T arm interaction was weakened by the mutations. The ethylnitrosourea-modification interference assay showed that EF-Tu2 is unique, in that it interacts with the phosphate groups on the T stem on the side that is opposite to where canonical EF-Tu binds. The hydrolysis protection assay using several EF-Tu2 mutants then strongly suggests that seven C-terminal amino acid residues of EF-Tu2 are essential for its aminoacyl-tRNA-binding activity. Our results indicate that the formation of the nematode mitochondrial (mt) EF-Tu2/GTP/aminoacyl-tRNA ternary complex is probably supported by a unique interaction between the C-terminal extension of EF-Tu2 and the tRNA.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Proteínas Mitocondriales/química , Factor Tu de Elongación Peptídica/química , Factores de Elongación de Péptidos/química , Aminoacil-ARN de Transferencia/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Aminoacil-ARN de Transferencia/metabolismo
13.
Nat Struct Mol Biol ; 24(9): 778-782, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28783151

RESUMEN

The genetic code is not frozen but still evolving, which can result in the acquisition of 'dialectal' codons that deviate from the universal genetic code. RNA modifications in the anticodon region of tRNAs play a critical role in establishing such non-universal genetic codes. In echinoderm mitochondria, the AAA codon specifies asparagine instead of lysine. By analyzing mitochondrial (mt-) tRNALys isolated from the sea urchin (Mesocentrotus nudus), we discovered a novel modified nucleoside, hydroxy-N6-threonylcarbamoyladenosine (ht6A), 3' adjacent to the anticodon (position 37). Biochemical analysis revealed that ht6A37 has the ability to prevent mt-tRNALys from misreading AAA as lysine, thereby indicating that hydroxylation of N6-threonylcarbamoyladenosine (t6A) contributes to the establishment of the non-universal genetic code in echinoderm mitochondria.


Asunto(s)
Código Genético , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Animales , Asparagina/metabolismo , Hidroxilación , Lisina/metabolismo
14.
Nucleic Acids Res ; 30(24): 5444-51, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12490713

RESUMEN

Caenorhabditis elegans mitochondria have two elongation factor (EF)-Tu species, denoted EF-Tu1 and EF-Tu2. Recombinant nematode EF-Ts purified from Escherichia coli bound both of these molecules and also stimulated the translational activity of EF-Tu, indicating that the nematode EF-Ts homolog is a functional EF-Ts protein of mitochondria. Complexes formed by the interaction of nematode EF-Ts with EF-Tu1 and EF-Tu2 could be detected by native gel electrophoresis and purified by gel filtration. Although the nematode mitochondrial (mt) EF-Tu molecules are extremely unstable and easily form aggregates, native gel electrophoresis and gel filtration analysis revealed that EF-Tu.EF-Ts complexes are significantly more soluble. This indicates that nematode EF-Ts can be used to stabilize homologous EF-Tu molecules for experimental purposes. The EF-Ts bound to two eubacterial EF-Tu species (E.coli and Thermus thermophilus). Although the EF-Ts did not bind to bovine mt EF-Tu, it could bind to a chimeric nematode-bovine EF-Tu molecule containing domains 1 and 2 from bovine mt EF-Tu. Thus, the nematode EF-Ts appears to have a broad specificity for EF-Tu molecules from different species.


Asunto(s)
Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Animales , Unión Competitiva , Caenorhabditis elegans/genética , Bovinos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Expresión Génica , Guanosina Difosfato/metabolismo , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/aislamiento & purificación , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
15.
Nucleic Acids Res ; 31(22): e145, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-14602938

RESUMEN

The introduction of modified or labeled nucleotides into RNA is a powerful RNA engineering tool as it enables us to investigate how native RNA modifications affect RNA function and structure. It also helps in the structural analysis of RNA. A modified nucleotide can be introduced into a specific position of RNA by the method of two-step enzymatic ligation of RNA fragments. However, this method requires a complicated purification step between the two ligation steps that results in low yields of the ligation product. Here we have developed a new ligation technique employing periodate oxide that eliminates this purification step. This increases the total yield of the ligation product and makes it a faster procedure.


Asunto(s)
Ácido Peryódico/metabolismo , ARN/metabolismo , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Espectrometría de Masas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oxidación-Reducción , ARN/genética , ARN de Transferencia de Leucina/química , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , Uridina/genética , Uridina/metabolismo
16.
Nucleic Acids Res ; 30(23): 5253-60, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12466550

RESUMEN

A DNA fragment d(GCGAAAGCT), known to adopt a stable mini-hairpin structure in solution, has been crystallized in the space group I4(1)22 with the unit-cell dimensions a = b = 53.4 A and c = 54.0 A, and the crystal structure has been determined at 2.5 A resolution. The four nucleotide residues CGAA of the first half of the oligomer form a parallel duplex with another half through the homo base pairs, C2:C2+ (singly-protonated between the Watson- Crick sites), G3:G3 (between the minor groove sites), A4:A4 (between the major groove sites) and A5:A5 (between the Watson-Crick sites). The two strands remaining in the half of the parallel duplex are split away in different directions, and they pair in an anti-parallel B-form duplex with the second half extending from a neighboring parallel duplex, so that an infinite column is formed in a head-to-tail fashion along the c-axis. It seems that a hexa-ammine cobalt cation supports such a branched and bent conformation of the oligomer. One end of the parallel duplex is stacked on the corresponding end of the adjacent parallel duplex; between them, the guanine base of the first residue is stacked on the fourth ribose of another duplex.


Asunto(s)
ADN/química , Modelos Moleculares , Emparejamiento Base , Secuencia de Bases , Cristalografía por Rayos X , Enlace de Hidrógeno , Iones , Estructura Molecular , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química
17.
FEBS Lett ; 590(24): 4628-4637, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27878988

RESUMEN

Incorporation of a sulfur atom into 2-thioribothymidine (s2 T or 5-methyl-2-thiouridine) at position 54 in thermophile tRNA is accomplished by an elaborate system composed of many proteins which confers thermostability to the translation system. We identified ttuD (tRNA-two-thiouridine D) as a gene for the synthesis of s2 T54 in Thermus thermophilus. The rhodanese-like protein TtuD enhances the activity of cysteine desulfurases and receives the persulfide generated by cysteine desulfurases in vitro. TtuD also enhances the formation of thiocarboxylated TtuB, the sulfur donor for the tRNA sulfurtransferase TtuA. Since cysteine desulfurases are the first enzymes in the synthesis of s2 T and other sulfur-containing compounds, TtuD has a role to direct sulfur flow to s2 T synthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN de Transferencia/metabolismo , Sulfurtransferasas/metabolismo , Thermus thermophilus/química , Tiouridina/análogos & derivados , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Imitación Molecular , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sulfurtransferasas/genética , Thermus thermophilus/enzimología , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Tiouridina/metabolismo
18.
FEBS Lett ; 579(13): 2767-72, 2005 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-15907479

RESUMEN

To understand the decoding property of nematode mitochondrial tRNAs with unusual secondary structures, post-transcriptional modifications at wobble positions of Ascaris suum mitochondrial tRNAs corresponding to two-codon families ending with a purine were analyzed. 5-Carboxymethylaminomethyluridine (cmnm(5)U) was identified at the wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln), while 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U) was present in tRNA(UAA)(Leu)andtRNA(Trp). In most bacterial and mitochondrial tRNAs, the 2-thiouridine derivative is present in tRNAs for Lys, Glu and Gln. These is no report that cmnm(5)s(2)U is used in tRNA(UAA)(Leu)andtRNA(Trp). The unusual usage of wobble modifications might assist decoding of nematode mitochondrial mRNAs.


Asunto(s)
Ascaris suum/genética , Mitocondrias/genética , ARN de Transferencia/genética , Animales , Secuencia de Bases , Cromatografía Liquida , Cromatografía en Capa Delgada , Cartilla de ADN , Espectrometría de Masas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia/química
19.
FEBS Lett ; 579(28): 6423-7, 2005 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-16271719

RESUMEN

All medically useful antibiotics should have the potential to distinguish between target microbes (bacteria) and host cells. Although many antibiotics that target bacterial protein synthesis show little effect on the translation machinery of the eukaryotic cytoplasm, it is unclear whether these antibiotics target or not the mitochondrial translation machinery. We employed an in vitro translation system from bovine mitochondria, which consists of mitochondrial ribosomes and mitochondrial elongation factors, to estimate the effect of antibiotics on mitichondrial protein synthesis. Tetracycline and thiostrepton showed similar inhibitory effects on both Escherichia coli and mitochondrial protein synthesis. The mitochondrial system was more resistant to tiamulin, macrolides, virginiamycin, fusidic acid and kirromycin than the E. coli system. The present results, taken together with atomic structure of the ribosome, may provide useful information for the rational design of new antibiotics having less adverse effects in humans and animals.


Asunto(s)
Antibacterianos/farmacología , Mitocondrias/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Bovinos , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Mitocondrias/metabolismo , Factores de Elongación de Péptidos/efectos de los fármacos , Ribosomas/efectos de los fármacos
20.
FEBS Lett ; 579(13): 2948-52, 2005 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-15893315

RESUMEN

Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.


Asunto(s)
Enfermedades Mitocondriales/genética , Mutación , ARN de Transferencia/genética , Secuencia de Bases , Células HeLa , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sondas ARN , ARN de Transferencia/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda