Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2318341121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289957

RESUMEN

As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.

2.
J Am Chem Soc ; 146(23): 16222-16228, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38778012

RESUMEN

The crystal structure of a material is essentially determined by the nature of its chemical bonding. Consequently, the atomic coordination intimately correlates with the degree of ionicity or covalency of the material. Based on this principle, materials with similar chemical compositions can be successfully categorized into different coordination groups. However, counterexamples have recently emerged in complex ternary compounds. For instance, covalent IB-IIIA-VIA2 compounds, such as AgInS2, prefer a tetrahedrally coordinated structure (TCS), while ionic IA-VA-VIA2 compounds, such as NaBiS2, would favor an octahedrally coordinated structure (OCS). One naturally expects that IB-VA-VIA2 compounds with intermediate ionicity or covalency, such as AgBiS2, should then have a mix-coordinated structure (MCS) consisting of covalent AgS4 tetrahedra and ionic BiS6 octahedra. Surprisingly, only the experimental presence of the OCS was observed for AgBiS2. To resolve this puzzle, we perform first-principles studies of the phase stabilities of ternary compounds at finite temperatures. We find that AgBiS2 indeed prefers MCS at the ground state, in agreement with the typical expectation, but under experimental synthesis conditions, disordered OCS becomes energetically more favorable because of its low mixing energy and high configurational entropy. Our work elucidates the critical role of configurational disorder in stabilizing chemically unfavorable coordination, providing a rigorous rationale for the anomalous coordination preference in IB-VA-VIA2 compounds.

3.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670931

RESUMEN

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

4.
J Am Chem Soc ; 146(10): 6618-6627, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349322

RESUMEN

Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.

5.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916909

RESUMEN

The conventional single-defect-mediated Shockley-Read-Hall model suggests that the nonradiative carrier recombination rate in wide-band gap (WBG) semiconductors would be negligible because the single-defect level is expected to be either far from valence-band-maximum (VBM) or conduction-band-minimum (CBM), or both. However, this model falls short of elucidating the substantial nonradiative recombination phenomena often observed experimentally across various WBG semiconductors. Owing to more localized nature of defect states inherent to WBG semiconductors, when the defect charge state changes, there is a pronounced structural relaxation around the local defect site. This suggests that a defect at each charge state may exhibit a few distinct local configurations, namely, a stable configuration and a few metastable/transit state configurations. Consequently, a dual-level nonradiative recombination model should more realistically exist in WBG semiconductors. In this model, through the dual-level mechanism, electron and hole trap levels are different from each other and could be closer to the CBM for the electron trap and closer to the VBM for the hole trap, respectively; therefore, this significantly increases the corresponding electron and hole capture rates, enhancing the overall process of nonradiative recombination, and explains the experimental observations. In this work, taking technically important SiO2 as an illustrative example, we introduce the dual-level mechanism to elucidate the mechanism of nonradiative carrier recombination in WBG semiconductors. Our findings demonstrated strong alignment with available experimental data, reinforcing the robustness of our proposed dual-level model. Our fundamental understanding, therefore, provides a clear physical picture of the issue and can also be applied to predict the defect-related nonradiative carrier recombination characteristics in other WBG materials.

6.
J Am Chem Soc ; 145(16): 9191-9197, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37125455

RESUMEN

Point defect chemistry strongly affects the fundamental properties of materials and has a decisive impact on device performance. The Group-V dopant is prominent acceptor species with high hole concentration in CdTe; however, its local atomic structure is still not clear owing to difficulties in definitive measurements and discrepancies between experimental observations and theoretical models. Herein, we report on direct observation of the local structure for the As dopant in CdTe single crystals by the X-ray fluorescence holography (XFH) technique, which is a powerful tool to visualize three-dimensional atomic configurations around a specific element. The XFH result shows the As substituting on both Cd (AsCd) and Te (AsTe) sites. Although AsTe has been well known as a shallow acceptor, AsCd has not attracted much attention and been discussed so far. Our results provide new insights into point defects by expanding the experimental XFH study in combination with theoretical first-principles studies in II-VI semiconductors.

7.
Phys Chem Chem Phys ; 25(27): 17787-17792, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37394989

RESUMEN

The organic molecules in hybrid perovskites can easily rotate within the inorganic lattice at room temperature, leading to a crystal-liquid duality. The liquid-like behavior of the organic molecules is commonly believed to play a critical role in the dynamical stability, but the microscopic mechanism remains unclear. Furthermore, the presence of dynamically rotating molecules raises concerns regarding the reliability of assessing the stability of hybrid perovskites based on simple yet commonly used descriptors such as the Goldschmidt tolerance factor. Here we assess the finite-temperature phonons of hybrid perovskites by mapping ab initio molecular dynamics configurations onto an equivalent dynamical pseudo-inorganic lattice and extracting the effective force constants. We find that as compared to the formamidinium or cesium cations, stronger anisotropy and wider range of the thermal motion of the methylammonium molecule are essential for enhancing the dynamical stability of hybrid perovskites. The cation radius that determines the tolerance factor is, in fact, less important. This work not only enables a pathway to further improve the stability of hybrid perovskites, but also provides a general scheme to assess the stability of hybrid materials with dynamical disorder.

8.
J Am Chem Soc ; 144(9): 3949-3956, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35200018

RESUMEN

Intertwisted bilayers of two-dimensional (2D) materials can host low-energy flat bands, which offer opportunity to investigate many intriguing physics associated with strong electron correlations. In the existing systems, ultra-flat bands only emerge at very small twist angles less than a few degrees, which poses a challenge for experimental studies and practical applications. Here, we propose a new design principle to achieve low-energy ultra-flat bands with increased twist angles. The key condition is to have a 2D semiconducting material with a large energy difference of band edges controlled by stacking. We show that the interlayer interaction leads to defect-like states under twisting, which forms a flat band in the semiconducting band gap with dispersion strongly suppressed by the large energy barriers in the moiré superlattice even for large twist angles. We explicitly demonstrate our idea in bilayer α-In2Se3 and bilayer InSe. For bilayer α-In2Se3, we show that a twist angle of ∼13.2° is sufficient to achieve the band flatness comparable to that of twist bilayer graphene at the magic angle ∼1.1°. In addition, the appearance of ultra-flat bands here is not sensitive to the twist angle as in bilayer graphene, and it can be further controlled by external gate fields. Our finding provides a new route to achieve ultra-flat bands other than reducing the twist angles and paves the way toward engineering such flat bands in a large family of 2D materials.

9.
Small ; 18(14): e2107516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146908

RESUMEN

Irradiation damage is a key issue for the reliability of semiconductor devices under extreme environments. For decades, the ionizing-irradiation-induced damage in transistors with silica-silicon (SiO2 -Si) structures at room temperature has been modeled by a uniform generation of E'γ centers in the bulk silica region through the capture of irradiation-induced holes, and an irreversible conversion from E'γ to Pb centers at the SiO2 /Si interface through reactions with hydrogen molecules (H2 ). However, the traditional model fails to explain experimentally-observed dose dependence of the defect concentrations, especially at low dose rate. Here, it is proposed that the generation of E'γ centers is decelerated because the holes migrate dispersively in disordered silica and the diffusion coefficient decays as the irradiation goes on. It is also proposed that the conversion between E'γ and Pb centers is reversible because the huge activation energy of the reverse reaction can be reduced by a "phonon-kick" effect of the vibrational energy of H2 and Pb centers transferred from nearby nonradiative recombination centers. Experimental studies are carried out to demonstrate that the derived analytic model based on these two new concepts can consistently explain the fundamental but puzzling dose dependence of the defect concentrations for an extremely wide dose rate range.


Asunto(s)
Dióxido de Silicio , Silicio , Reproducibilidad de los Resultados , Silicio/química , Dióxido de Silicio/química
10.
Phys Rev Lett ; 128(13): 136401, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426707

RESUMEN

It has been experimentally observed that light-induced lattice expansion could enhance the solar conversion efficiency in hybrid perovskites, but the origin remains elusive. By performing rigorous first-principles calculations for a prototypical hybrid-perovskite FAPbI_{3} (FA: formamidinium), we show that 1% lattice expansion could already reduce the nonradiative capture coefficient by one order of magnitude. Unexpectedly, the suppressed nonradiative capture is not caused by changes in the band gap or defect transition level due to lattice expansion, but originates from enhanced defect relaxations associated with charge-state transitions in the expanded lattice. These insights not only provide a rationale for the efficiency enhancement by lattice expansion in hybrid perovskites, but also offer a general approach to the manipulation of nonradiative capture via strain engineering in a wide spectrum of optoelectronic materials.

11.
Small ; 17(36): e2102429, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34313000

RESUMEN

It was believed that the Se-rich synthesis condition can suppress the formation of deep-level donor defect VSe (selenium vacancy) in Sb2 Se3 and is thus critical for fabricating high-efficiency Sb2 Se3 solar cells. However, here it is shown that by first-principles calculations the density of VSe increases unexpectedly to 1016 cm-3 when the Se chemical potential increases, so Se-rich condition promotes rather than suppresses the formation of VSe . Therefore, high density of VSe is thermodynamically inevitable, no matter under Se-poor or Se-rich conditions. This abnormal behavior can be explained by a physical concept "defect-correlation", i.e., when donor and acceptor defects compensate each other, all defects become correlated with each other due to the formation energy dependence on Fermi level which is determined by densities of all ionized defects. In quasi-1D Sb2 Se3 , there are many defects and the complicated defect-correlation can give rise to abnormal behaviors, e.g., lowering Fermi level and thus decreasing the formation energy of ionized donor VSe 2+ in Se-rich Sb2 Se3 . Such behavior exists also in Sb2 S3 . It explains the recent experiments that the extremely Se-rich condition causes the efficiency drop of Sb2 Se3 solar cells, and demonstrates that the common chemical intuition and defect engineering strategies may be invalid in compensated semiconductors.

12.
Phys Rev Lett ; 124(8): 086401, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167367

RESUMEN

The existence of Bloch flat bands of electrons provides a facile pathway to obtain exotic quantum phases owing to strong correlation. Despite the established magic angle mechanism for twisted bilayer graphene, understanding of the emergence of flat bands in twisted bilayers of two-dimensional polar crystals remains elusive. Here, we show that due to the polarity between constituent elements in the monolayer, the formation of complete flat bands in twisted bilayers is triggered as long as the twist angle is less than a certain critical value. Using the twisted bilayer of hexagonal boron nitride (hBN) as an example, our simulations using the density-functional tight-binding method reveal that the flat band originates from the stacking-induced decoupling of the highest occupied (lowest unoccupied) states, which predominantly reside in the regions of the moiré superlattice where the anion (cation) atoms in both layers are overlaid. Our findings have important implications for the future search for and study of flat bands in polar materials.

13.
Langmuir ; 36(48): 14539-14545, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33238708

RESUMEN

Recent advances in organic surface sensitization of metal oxide nanomaterials focused on two-step approaches with the first step providing a convenient functionalized chemical "hook", such as an alkyne functionality connected to a carboxylic group in prop-2-ynoic acid. The second step then took advantage of copper-catalyzed click chemistry to deliver the desired structure (such as benzyl or perylene) attached to an azide to react with the surface-bound alkyne. The use of this approach on CuO not only resulted in a successful morphology preserving chemical modification but also has demonstrated that surface Cu(I) can be obtained during the process and promote a surface-catalyzed click reaction without additional copper catalyst. Here, it is demonstrated that this surface-catalyzed chemistry can be performed on a surface of the CuO nanomaterial without a solvent, as a "dry click" reaction, as confirmed with spectroscopic and microscopic investigations with X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, solid-state nuclear magnetic resonance, and scanning electron microscopy. Computational studies provided instructive information on the interaction between the surface prop-2-yonate and azide functional group to better understand the mechanism of this surface-catalyzed click reaction.

14.
Phys Chem Chem Phys ; 22(14): 7294-7299, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32211628

RESUMEN

Realization of half-metallicity (HM) in low dimensional materials is a fundamental challenge for nano spintronics and a critical component for developing alternative generations of information technology. Using first-principles calculations, we reveal an unconventional deformation potential for zigzag nanoribbons (NRs) of 2D-Xenes. Both the conduction band minimum (CBM) and valence band maximum (VBM) of the edge states have negative deformation potentials. This unique property, combined with the localization and spin-polarization of the edge states, enables us to induce spin-splitting and HM using an inhomogeneous strain pattern, such as simple in-plane bending. Indeed, our calculation using the generalized Bloch theorem reveals the predicted HM in bent zigzag silicene NRs. Furthermore, the magnetic stability of the long range magnetic order for the spin-polarized edge states is maintained well against the bending deformation. These aspects indicate that it is a promising approach to realize HM in low dimensions with the zigzag 2D-Xene NRs.

15.
Phys Chem Chem Phys ; 22(20): 11567-11571, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32400823

RESUMEN

Searching for half-metals in low dimensional materials is not only of scientific importance, but also has important implications for the realization of spintronic devices on a small scale. In this work, we show theoretically that simple bending can induce spin-splitting in bilayer silicene. For bilayer silicene with Bernal stacking, the monolayer has a long range ferromagnetic spin order and between the two monolayers, the spin orders are opposite, giving rise to an antiferromagnetic configuration for the ground state of the bilayer silicene. Under bending, the antiferromagnetic spin order is retained but the energetic degeneracy of opposite spin states is lifted. Due to the unusual deformation potentials of the conduction band minimum (CBM) and valence band maximum (VBM) as revealed by density-functional theory calculations and density-functional tight-binding calculations, this spin-splitting is nearly proportional to the degree of bending deformation. Consequently, the spin-splitting can be significant and the desired half-metallic state may emerge when the bending increases, which has been verified by direct simulation of the bent bilayer silicene using the generalized Bloch theorem. Our results hint that bilayer silicene may be an excellent candidate for half-metallicity.

16.
Proc Natl Acad Sci U S A ; 113(32): 8910-5, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27444014

RESUMEN

The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

17.
Nano Lett ; 18(11): 6665-6671, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30350652

RESUMEN

Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.

18.
Phys Chem Chem Phys ; 20(18): 12916-12922, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701208

RESUMEN

Based on first-principles calculations, we present a systematic investigation of the electronic and magnetic properties of armchair phosphorene nanoribbons (APNRs) functionalized by 3d transition metal (TM) atoms. We found that the central hollow site is the most favorable adsorption site for Mn, Co and Ni, while Fe preferentially occupies the edge hollow site. All of the TM atoms bind to the adjacent P and their adsorption energies are in the range of -4.29 eV to -1.59 eV. Meanwhile, the large ratio of the adsorption energy to the cohesive energy of the metal bulk phase indicates that TM atoms have a preferred 2D growth mode on the edge hydrogenated armchair phosphorene nanoribbons (H-APNRs). The magnetic moments reduce by about 2-4 µB, relative to their free atom states, depending on whether the TM atom is in the high-spin or low-spin state. This reduction is mainly attributed to the electrons transferring from the high-level TM 4s shell to the low-lying 3d shell. Our results demonstrate that TM atom adsorption is a feasible approach to functionalizing the H-APNRs chemically, which results in peculiar electronic and magnetic properties for potential applications in nano-electronics and spintronics.

19.
Phys Chem Chem Phys ; 20(27): 18455-18462, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29947383

RESUMEN

A simple and efficient top-down strategy, the chemical vapor etching method, is reported for synthesizing corrugated ZnO nano/micro rods (NRs). The stabilization mechanism of this unique nanostructure has been determined through a combination of aberration-corrected field emission scanning electron microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The experimental data are in good agreement with the theoretical calculations, and a remarkable nonpolar-to-polar surface faceting transition is demonstrated. The corrugated-shaped structure results from the remarkable stability of the defect-induced reconstructions (O vacancy, Zn-Zn dimer), which makes the high-index polar {303[combining macron]1} and {101[combining macron]1[combining macron]} planes lower in energy compared to the nonpolar {101[combining macron]0} plane. Based on the results of first-principles surface calculations, a general formula is established to provide an accurate description of the unusual size effect of the length of the corrugated unit vs. the NR diameter, and it also offers direct explanations for certain experimental observations. The present study deepens our atomic-level understanding of the detailed structure and stability of polar surface decorated corrugated ZnO NRs, and points to a viable path towards designing polar-stable wurtzite structures.

20.
J Am Chem Soc ; 139(7): 2630-2638, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28112933

RESUMEN

Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb2+-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb2+ ions into one monovalent M+ and one trivalent M3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda