Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570593

RESUMEN

Arabinoxylan has prebiotic properties, as it is able to resist digestion in the small intestine and undergoes fermentation in the large intestine. In this work, arabinoxylan was extracted from corn fiber using an alkaline solution and further purified with membrane processing. It was found that the extracts were mainly composed of xylose (50-52%), arabinose (37-39%), galactose (9%) and glucose (1-4%), with an A/X ratio of 0.72-0.77. All the extracts were composed of phenolic compounds, including ferulic acid derivatives such as dimers, trimers and tetramers. The purified extract had a lower concentration of ferulic and p-coumaric acid (0.004 and 0.02 mg/mgdry_weight, respectively) when compared to raw extract (19.30 and 2.74 mg/mgdry_weight, respectively). The same effect was observed for the antioxidant activity, with purified extracts having a lower value (0.17 ± 0.02 µmol TEAC/mg) when compared to the raw extract (2.20 ± 0.35 µmol TEAC/mg). The purified extract showed a greater antiproliferative effect against the HT29 cell line with EC50 = 0.12 ± 0.02 mg/mL when compared to the raw extract (EC50 = 5.60 ± 1.6 mg/mL). Both raw and purified extracts did not show any cytotoxicity to the Caco-2 cell line in the maximum concentration tested (10 mg/mL).


Asunto(s)
Fenoles , Zea mays , Humanos , Células CACO-2 , Fenoles/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología
2.
Membranes (Basel) ; 11(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924788

RESUMEN

Corn fiber from the corn starch industry is a by-product produced in large quantity that is mainly used in animal feed formulations, though it is still rich in valuable components, such as arabinoxylans, with proven film-forming ability. During arabinoxylans' recovery under alkaline extraction, a dark-colored biopolymer fraction is obtained. In this work, a purified arabinoxylan extract from corn fiber with an intense brownish color was decolorized using hydrogen peroxide as the decolorizing agent. Biodegradable films prepared by casting the decolorized extract exhibited a light-yellow color, considered more appealing, envisaging their application in food packaging. Films were prepared with glycerol as plasticizer and citric acid as cross-linker. Although the cross-linking reaction was not effective, films presented antioxidant activity, a water vapor permeability similar to that of non-decolorized films, and other polysaccharides' and mechanical properties that enable their application as packaging materials of low-water-content food products.

3.
Membranes (Basel) ; 10(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403334

RESUMEN

Corn fiber, a by-product of the starch industry, is presently incorporated in animal feed. However, it has arabinoxylans as added-value components (besides ferulic acid) that should be valorized. In this work, the raw material, a fraction enriched in arabinoxylans from corn fiber, previously produced by alkaline extraction from corn fiber and pre-concentrated by ultrafiltration, was further purified. The use of ultrafiltration operated in diafiltration mode (dia-ultrafiltration) was evaluated for the purification of the arabinoxylans fraction. The objective was to maximize the removal of the small contaminants from the fraction and to maximize the permeability and/or the permeate flux, by selecting the relevant operating conditions involved in this process. The removal of contaminants (%) was estimated when their apparent rejection stabilized. Edible films were produced, from the resultant purified arabinoxylans fraction, using glycerol as plasticizer (30% dry basis). Additionally, films with the incorporation of ferulic acid were developed, in order to obtain barriers with antioxidant activity. The films were characterized in terms of mechanical properties, antioxidant activity and permeability to water vapor. The films prepared presented a good potential to be used as packaging for food products with low water content.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda