Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483372

RESUMEN

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Asunto(s)
Química Clic , Imagen Óptica , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Mamíferos , Ratones , Imagen Óptica/métodos
2.
Cell ; 170(5): 1013-1027.e14, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28823561

RESUMEN

Reward-seeking behavior is fundamental to survival, but suppression of this behavior can be essential as well, even for rewards of high value. In humans and rodents, the medial prefrontal cortex (mPFC) has been implicated in suppressing reward seeking; however, despite vital significance in health and disease, the neural circuitry through which mPFC regulates reward seeking remains incompletely understood. Here, we show that a specific subset of superficial mPFC projections to a subfield of nucleus accumbens (NAc) neurons naturally encodes the decision to initiate or suppress reward seeking when faced with risk of punishment. A highly resolved subpopulation of these top-down projecting neurons, identified by 2-photon Ca2+ imaging and activity-dependent labeling to recruit the relevant neurons, was found capable of suppressing reward seeking. This natural activity-resolved mPFC-to-NAc projection displayed unique molecular-genetic and microcircuit-level features concordant with a conserved role in the regulation of reward-seeking behavior, providing cellular and anatomical identifiers of behavioral and possible therapeutic significance.


Asunto(s)
Recompensa , Animales , Conducta Animal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas , Neuroimagen , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Castigo
3.
Cell ; 164(6): 1136-1150, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967281

RESUMEN

Communication, the effective delivery of information, is fundamental to life across all scales and species. Nervous systems (by necessity) may be most specifically adapted among biological tissues for high rate and complexity of information transmitted, and thus, the properties of neural tissue and principles of its organization into circuits may illuminate capabilities and limitations of biological communication. Here, we consider recent developments in tools for studying neural circuits with particular attention to defining neuronal cell types by input and output information streams--i.e., by how they communicate. Complementing approaches that define cell types by virtue of genetic promoter/enhancer properties, this communication-based approach to defining cell types operationally by input/output (I/O) relationships links structure and function, resolves difficulties associated with single-genetic-feature definitions, leverages technology for observing and testing significance of precisely these I/O relationships in intact brains, and maps onto processes through which behavior may be adapted during development, experience, and evolution.


Asunto(s)
Encéfalo/fisiología , Vías Nerviosas , Transducción de Señal , Animales , Humanos , Optogenética , Mapas de Interacción de Proteínas , Sinapsis
4.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238022

RESUMEN

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Asunto(s)
Conducta Animal , Mapeo Encefálico/métodos , Corteza Prefrontal/citología , Animales , Conducta Apetitiva , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cocaína/administración & dosificación , Electrochoque , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/metabolismo
5.
Cell ; 162(4): 766-79, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276631

RESUMEN

Compensatory proliferation triggered by hepatocyte loss is required for liver regeneration and maintenance but also promotes development of hepatocellular carcinoma (HCC). Despite extensive investigation, the cells responsible for hepatocyte restoration or HCC development remain poorly characterized. We used genetic lineage tracing to identify cells responsible for hepatocyte replenishment following chronic liver injury and queried their roles in three distinct HCC models. We found that a pre-existing population of periportal hepatocytes, located in the portal triads of healthy livers and expressing low amounts of Sox9 and other bile-duct-enriched genes, undergo extensive proliferation and replenish liver mass after chronic hepatocyte-depleting injuries. Despite their high regenerative potential, these so-called hybrid hepatocytes do not give rise to HCC in chronically injured livers and thus represent a unique way to restore tissue function and avoid tumorigenesis. This specialized set of pre-existing differentiated cells may be highly suitable for cell-based therapy of chronic hepatocyte-depleting disorders.


Asunto(s)
Hepatocitos/trasplante , Hígado/citología , Hígado/fisiología , Animales , Conductos Biliares/citología , Proliferación Celular , Trasplante de Células/métodos , Hepatocitos/clasificación , Hepatocitos/citología , Hígado/lesiones , Neoplasias Hepáticas , Ratones , Regeneración , Factor de Transcripción SOX9/genética , Transcriptoma
6.
Cell ; 156(1-2): 304-16, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439384

RESUMEN

A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or ß3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Proteínas de Unión al ADN/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dieta Alta en Grasa , Resistencia a la Insulina , Ratones , Ratones Noqueados , Factores de Transcripción/genética
7.
Nature ; 621(7977): 138-145, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587337

RESUMEN

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Asunto(s)
Temperatura Corporal , Frío , Conducta Alimentaria , Tálamo , Animales , Ratones , Temperatura Corporal/fisiología , Mapeo Encefálico , Calcio/metabolismo , Conducta Alimentaria/fisiología , Metabolismo Energético/fisiología , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Optogenética , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Homeostasis/fisiología , Termogénesis/fisiología
8.
Nature ; 623(7986): 387-396, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914931

RESUMEN

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


Asunto(s)
Corazón , Reflejo , Células Receptoras Sensoriales , Síncope , Nervio Vago , Humanos , Área Postrema , Bradicardia/complicaciones , Bradicardia/fisiopatología , Gasto Cardíaco Bajo/complicaciones , Gasto Cardíaco Bajo/fisiopatología , Ecocardiografía , Corazón/fisiología , Frecuencia Cardíaca , Hipotensión/complicaciones , Hipotensión/fisiopatología , Flujometría por Láser-Doppler , Red Nerviosa , Reflejo/fisiología , Células Receptoras Sensoriales/fisiología , Análisis de Expresión Génica de una Sola Célula , Síncope/complicaciones , Síncope/etiología , Nervio Vago/citología , Nervio Vago/fisiología
9.
Nature ; 609(7927): 569-574, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045288

RESUMEN

Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.


Asunto(s)
Tejido Adiposo , Células Receptoras Sensoriales , Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Tejido Adiposo Beige/inervación , Tejido Adiposo Beige/metabolismo , Animales , Axones , Metabolismo Energético , Ganglios Espinales/fisiología , Homeostasis , Hormonas/metabolismo , Ratones , Especificidad de Órganos , Células Receptoras Sensoriales/fisiología , Grasa Subcutánea/inervación , Grasa Subcutánea/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Termogénesis/genética
10.
Annu Rev Pharmacol Toxicol ; 64: 507-526, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37722721

RESUMEN

Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteoma , Humanos , Tecnología
11.
Cell ; 151(1): 96-110, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021218

RESUMEN

PGC1α is a key transcriptional coregulator of oxidative metabolism and thermogenesis. Through a high-throughput chemical screen, we found that molecules antagonizing the TRPVs (transient receptor potential vanilloid), a family of ion channels, induced PGC1α expression in adipocytes. In particular, TRPV4 negatively regulated the expression of PGC1α, UCP1, and cellular respiration. Additionally, it potently controlled the expression of multiple proinflammatory genes involved in the development of insulin resistance. Mice with a null mutation for TRPV4 or wild-type mice treated with a TRPV4 antagonist showed elevated thermogenesis in adipose tissues and were protected from diet-induced obesity, adipose inflammation, and insulin resistance. This role of TRPV4 as a cell-autonomous mediator for both the thermogenic and proinflammatory programs in adipocytes could offer a target for treating obesity and related metabolic diseases.


Asunto(s)
Metabolismo Energético , Canales Catiónicos TRPV/metabolismo , Termogénesis , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Técnicas de Silenciamiento del Gen , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Transactivadores/metabolismo , Factores de Transcripción , Proteína Desacopladora 1
12.
Cell ; 150(2): 366-76, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22796012

RESUMEN

Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP:


Asunto(s)
Adipocitos/clasificación , Adipocitos/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Separación Celular , Perfilación de la Expresión Génica , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 1
13.
EMBO J ; 40(24): e106061, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459015

RESUMEN

Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the ß2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/genética , Macrófagos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Grasa Subcutánea/citología , Animales , Células Cultivadas , Frío , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Cultivo Primario de Células , Grasa Subcutánea/metabolismo , Termogénesis
14.
Nat Methods ; 19(4): 479-485, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347322

RESUMEN

The recent development of solvent- and polymer-based brain-clearing techniques has advanced our ability to visualize the mammalian nervous system in three dimensions. However, it remains challenging to image the mammalian body en bloc. Here we developed HYBRiD (hydrogel-based reinforcement of three-dimensional imaging solvent-cleared organs (DISCO)), by recombining components of organic- and polymer-based clearing pipelines. We achieved high transparency and protein retention, as well as compatibility with direct fluorescent imaging and immunostaining in cleared mammalian bodies. Using parvalbumin- and somatostatin-Cre models, we demonstrated the utility of HYBRiD for whole-body imaging of genetically encoded fluorescent reporters without antibody enhancement of signals in newborn and juvenile mice. Using K18-hACE2 transgenic mice, HYBRiD enabled perfusion-free clearing and visualization of SARS-CoV-2 infection in a whole mouse chest, revealing macroscopic and microscopic features of viral pathology in the same sample. HYBRiD offers a simple and universal solution to visualize large heterogeneous body parts or entire animals for basic and translational research.


Asunto(s)
COVID-19 , Hidrogeles , Animales , Imagenología Tridimensional/métodos , Mamíferos , Ratones , Polímeros , SARS-CoV-2 , Solventes
15.
Plant Cell ; 34(11): 4313-4328, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35904763

RESUMEN

Leaf morphology is one of the most important features of the ideal plant architecture. However, the genetic and molecular mechanisms controlling this feature in crops remain largely unknown. Here, we characterized the rice (Oryza sativa) wide leaf 1 (wl1) mutant, which has wider leaves than the wild-type due to more vascular bundles and greater distance between small vascular bundles. WL1 encodes a Cys-2/His-2-type zinc finger protein that interacts with Tillering and Dwarf 1 (TAD1), a co-activator of the anaphase-promoting complex/cyclosome (APC/C) (a multi-subunit E3 ligase). The APC/CTAD1 complex degrades WL1 via the ubiquitin-26S proteasome degradation pathway. Loss-of-function of TAD1 resulted in plants with narrow leaves due to reduced vascular bundle numbers and distance between the small vascular bundles. Interestingly, we found that WL1 negatively regulated the expression of a narrow leaf gene, NARROW LEAF 1 (NAL1), by recruiting the co-repressor TOPLESS-RELATED PROTEIN and directly binding to the NAL1 regulatory region to inhibit its expression by reducing the chromatin histone acetylation. Furthermore, biochemical and genetic analyses revealed that TAD1, WL1, and NAL1 operated in a common pathway to control the leaf width. Our study establishes an important framework for understanding the APC/CTAD1-WL1-NAL1 pathway-mediated control of leaf width in rice, and provides insights for improving crop plant architecture.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
16.
Nature ; 565(7741): 645-649, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651638

RESUMEN

Categorically distinct basic drives (for example, for social versus feeding behaviour1-3) can exert potent influences on each other; such interactions are likely to have important adaptive consequences (such as appropriate regulation of feeding in the context of social hierarchies) and can become maladaptive (such as in clinical settings involving anorexia). It is known that neural systems regulating natural and adaptive caloric intake, and those regulating social behaviours, involve related circuitry4-7, but the causal circuit mechanisms of these drive adjudications are not clear. Here we investigate the causal role in behaviour of cellular-resolution experience-specific neuronal populations in the orbitofrontal cortex, a major reward-processing hub that contains diverse activity-specific neuronal populations that respond differentially to various aspects of caloric intake8-13 and social stimuli14,15. We coupled genetically encoded activity imaging with the development and application of methods for optogenetic control of multiple individually defined cells, to both optically monitor and manipulate the activity of many orbitofrontal cortex neurons at the single-cell level in real time during rewarding experiences (caloric consumption and social interaction). We identified distinct populations within the orbitofrontal cortex that selectively responded to either caloric rewards or social stimuli, and found that activity of individually specified naturally feeding-responsive neurons was causally linked to increased feeding behaviour; this effect was selective as, by contrast, single-cell resolution activation of naturally social-responsive neurons inhibited feeding, and activation of neurons responsive to neither feeding nor social stimuli did not alter feeding behaviour. These results reveal the presence of potent cellular-level subnetworks within the orbitofrontal cortex that can be precisely engaged to bidirectionally control feeding behaviours subject to, for example, social influences.


Asunto(s)
Conducta Alimentaria/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Condicionamiento Operante/fisiología , Ingestión de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Recompensa , Análisis de la Célula Individual
17.
Cancer Metastasis Rev ; 42(3): 653-659, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37582896

RESUMEN

It has been demonstrated that scar tissue and fibrosis may increase the likelihood of developing malignancies. Specifically, scar tissue has been linked to the occurrence and progression of lung cancer (LC), though the precise mechanisms necessitate further research for explanation. Lung scarring can stem from various causes, with carcinogenesis on scarring lesions in pulmonary tuberculosis (PTB) being the most frequent (accounting for approximately 75% of cases). Notably, having previously cured, PTB is the second most common risk factor for LC after smoking, with approximately 3% of PTB patients experiencing LC as a secondary condition. This essay will delve into the mechanisms, treatment, and prognosis of tuberculosis scar carcinoma (TSC).


Asunto(s)
Carcinoma , Neoplasias Pulmonares , Tuberculosis Pulmonar , Humanos , Cicatriz/complicaciones , Cicatriz/patología , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/epidemiología , Neoplasias Pulmonares/patología , Carcinoma/complicaciones , Factores de Riesgo
18.
BMC Med ; 22(1): 116, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481207

RESUMEN

BACKGROUND: Experiences during childhood and adolescence have enduring impacts on physical and mental well-being, overall quality of life, and socioeconomic status throughout one's lifetime. This underscores the importance of prioritizing the health of children and adolescents to establish an impactful healthcare system that benefits both individuals and society. It is crucial for healthcare providers and policymakers to examine the relationship between COVID-19 and the health of children and adolescents, as this understanding will guide the creation of interventions and policies for the long-term management of the virus. METHODS: In this umbrella review (PROSPERO ID: CRD42023401106), systematic reviews were identified from the Cochrane Database of Systematic Reviews; EMBASE (OvidSP); and MEDLINE (OvidSP) from December 2019 to February 2023. Pairwise and single-arm meta-analyses were extracted from the included systematic reviews. The methodological quality appraisal was completed using the AMSTAR-2 tool. Single-arm meta-analyses were re-presented under six domains associated with COVID-19 condition. Pairwise meta-analyses were classified into five domains according to the evidence classification criteria. Rosenberg's FSN was calculated for both binary and continuous measures. RESULTS: We identified 1551 single-arm and 301 pairwise meta-analyses from 124 systematic reviews that met our predefined criteria for inclusion. The focus of the meta-analytical evidence was predominantly on the physical outcomes of COVID-19, encompassing both single-arm and pairwise study designs. However, the quality of evidence and methodological rigor were suboptimal. Based on the evidence gathered from single-arm meta-analyses, we constructed an illustrative representation of the disease severity, clinical manifestations, laboratory and radiological findings, treatments, and outcomes from 2020 to 2022. Additionally, we discovered 17 instances of strong or highly suggestive pairwise meta-analytical evidence concerning long-COVID, pediatric comorbidity, COVID-19 vaccines, mental health, and depression. CONCLUSIONS: The findings of our study advocate for the implementation of surveillance systems to track health consequences associated with COVID-19 and the establishment of multidisciplinary collaborative rehabilitation programs for affected younger populations. In future research endeavors, it is important to prioritize the investigation of non-physical outcomes to bridge the gap between research findings and clinical application in this field.


Asunto(s)
COVID-19 , Niño , Humanos , Adolescente , COVID-19/epidemiología , Calidad de Vida , Vacunas contra la COVID-19 , Síndrome Post Agudo de COVID-19 , Revisiones Sistemáticas como Asunto
19.
J Med Virol ; 96(2): e29466, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344929

RESUMEN

Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.


Asunto(s)
Coinfección , Infecciones por VIH , Micosis , Humanos , Receptor Toll-Like 2/genética , ARN Helicasas
20.
Respir Res ; 25(1): 16, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178098

RESUMEN

BACKGROUND: Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS: A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS: In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION: Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.


Asunto(s)
Microbioma Gastrointestinal , Tuberculosis Pulmonar , Tuberculosis , Humanos , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Tuberculosis/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda