Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.219
Filtrar
1.
Nat Immunol ; 16(1): 96-106, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25436971

RESUMEN

Follicular helper T cells (TFH cells) and follicular regulatory T cells (TFR cells) regulate the quantity and quality of humoral immunity. Although both cell types express the costimulatory receptor ICOS and require the transcription factor Bcl-6 for their differentiation, the ICOS-dependent pathways that coordinate their responses are not well understood. Here we report that activation of ICOS in CD4(+) T cells promoted interaction of the p85α regulatory subunit of the signaling kinase PI(3)K and intracellular osteopontin (OPN-i), followed by translocation of OPN-i to the nucleus, its interaction with Bcl-6 and protection of Bcl-6 from ubiquitin-dependent proteasome degradation. Post-translational protection of Bcl-6 by OPN-i was essential for sustained responses of TFH cells and TFR cells and regulation of the germinal center B cell response to antigen. Thus, the p85α-OPN-i axis represents a molecular bridge that couples activation of ICOS to Bcl-6-dependent functional differentiation of TFH cells and TFR cells; this suggests new therapeutic avenues to manipulate the responses of these cells.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Osteopontina/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Femenino , Citometría de Flujo , Centro Germinal/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Osteopontina/genética , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-bcl-6/genética , ARN Mensajero/química , ARN Mensajero/genética , Distribución Aleatoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos
2.
Proc Natl Acad Sci U S A ; 121(3): e2312680121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194462

RESUMEN

Periodic spin-orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments-a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip-spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip-spin-orbit motions, we showcase the robot's potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages.

3.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422022

RESUMEN

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Asunto(s)
Linfoma de Células B , Proteínas Represoras , Animales , Ratones , Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Microambiente Tumoral
4.
Blood ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190466

RESUMEN

Immune thrombocytopenia (ITP) is a complicated bleeding disease characterized by sharp platelet reduction. As a dominating element involved in ITP, megakaryocytes (MKs) are responsible for thrombopoiesis. However, the mechanism underlying the dysregulation of thrombopoiesis that occurs in ITP remains unidentified. In this study, we examined the role of yes-associated protein 1 (YAP1) in thrombopoiesis during ITP. We observed a reduced YAP1 expression with cytoskeletal actin misalignment in MKs from ITP patients. By using an experimental ITP mouse model, we showed that reduced YAP1 expression induced aberrant MK distribution, reduced the percentage of late MKs among total MKs, and caused submaximal platelet recovery. Mechanistically, YAP1 upregulation by binding of GATA binding protein 1 (GATA1) to its promoter promoted MK maturation. Phosphorylated YAP1 promoted cytoskeletal activation by binding of its WW2 domain to myosin heavy chain 9 (MYH9), facilitating thrombopoiesis. Targeting YAP1 by its activator XMU-MP-1 was sufficient to rescue cytoskeletal defects and thrombopoiesis dysregulation in YAP1+/- mice with ITP and patients. Taken together, these results demonstrate a crucial role for YAP1 in thrombopoiesis, providing a potential for the development of diagnostic markers and therapeutic options for ITP.

5.
Nature ; 584(7819): 125-129, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32528175

RESUMEN

The D2 dopamine receptor (DRD2) is a therapeutic target for Parkinson's disease1 and antipsychotic drugs2. DRD2 is activated by the endogenous neurotransmitter dopamine and synthetic agonist drugs such as bromocriptine3, leading to stimulation of Gi and inhibition of adenylyl cyclase. Here we used cryo-electron microscopy to elucidate the structure of an agonist-bound activated DRD2-Gi complex reconstituted into a phospholipid membrane. The extracellular ligand-binding site of DRD2 is remodelled in response to agonist binding, with conformational changes in extracellular loop 2, transmembrane domain 5 (TM5), TM6 and TM7, propagating to opening of the intracellular Gi-binding site. The DRD2-Gi structure represents, to our knowledge, the first experimental model of a G-protein-coupled receptor-G-protein complex embedded in a phospholipid bilayer, which serves as a benchmark to validate the interactions seen in previous detergent-bound structures. The structure also reveals interactions that are unique to the membrane-embedded complex, including helix 8 burial in the inner leaflet, ordered lysine and arginine side chains in the membrane interfacial regions, and lipid anchoring of the G protein in the membrane. Our model of the activated DRD2 will help to inform the design of subtype-selective DRD2 ligands for multiple human central nervous system disorders.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Lípidos de la Membrana/metabolismo , Membranas Artificiales , Receptores de Dopamina D2/química , Receptores de Dopamina D2/ultraestructura , Bromocriptina/química , Bromocriptina/metabolismo , Dopamina/química , Dopamina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Lípidos de la Membrana/química , Modelos Moleculares , Conformación Proteica , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Transducción de Señal
6.
J Immunol ; 210(3): 271-282, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548460

RESUMEN

Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/genética , Transcriptoma , Intestino Delgado/patología , Intestinos/patología , Análisis de Secuencia de ARN
7.
Drug Resist Updat ; 74: 101080, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579635

RESUMEN

BACKGROUND: Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. METHODS: We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. RESULTS: Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. CONCLUSION: Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Gástricas , Humanos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Aprendizaje Profundo , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/uso terapéutico , Inmunoterapia/métodos , Multiómica , Oxaliplatino/uso terapéutico , Medicina de Precisión/métodos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología
8.
Proc Natl Acad Sci U S A ; 119(22): e2200265119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605115

RESUMEN

Soft robots that can harvest energy from environmental resources for autonomous locomotion is highly desired; however, few are capable of adaptive navigation without human interventions. Here, we report twisting soft robots with embodied physical intelligence for adaptive, intelligent autonomous locomotion in various unstructured environments, without on-board or external controls and human interventions. The soft robots are constructed of twisted thermal-responsive liquid crystal elastomer ribbons with a straight centerline. They can harvest thermal energy from environments to roll on outdoor hard surfaces and challenging granular substrates without slip, including ascending loose sandy slopes, crossing sand ripples, escaping from burying sand, and crossing rocks with additional camouflaging features. The twisting body provides anchoring functionality by burrowing into loose sand. When encountering obstacles, they can either self-turn or self-snap for obstacle negotiation and avoidance. Theoretical models and finite element simulation reveal that such physical intelligence is achieved by spontaneously snapping-through its soft body upon active and adaptive soft body-obstacle interactions. Utilizing this strategy, they can intelligently escape from confined spaces and maze-like obstacle courses without any human intervention. This work presents a de novo design of embodied physical intelligence by harnessing the twisting geometry and snap-through instability for adaptive soft robot-environment interactions.


Asunto(s)
Robótica , Toma de Decisiones , Inteligencia
9.
Hum Mol Genet ; 31(13): 2279-2293, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35022708

RESUMEN

Inguinal hernias are some of the most frequently diagnosed conditions in clinical practice and inguinal hernia repair is the most common procedure performed by general surgeons. Studies of inguinal hernias in non-European populations are lacking, though it is expected that such studies could identify novel loci. Further, the cumulative lifetime incidence of inguinal hernia is nine times greater in men than women, however, it is not clear why this difference exists. We conducted a genome-wide association meta-analysis of inguinal hernia risk across 513 120 individuals (35 774 cases and 477 346 controls) of Hispanic/Latino, African, Asian and European descent, with replication in 728 418 participants (33 491 cases and 694 927 controls) from the 23andMe, Inc dataset. We identified 63 genome-wide significant loci (P < 5 × 10-8), including 41 novel. Ancestry-specific analyses identified two loci (LYPLAL1-AS1/SLC30A10 and STXBP6-NOVA1) in African ancestry individuals. Sex-stratified analyses identified two loci (MYO1D and ZBTB7C) that are specific to women, and four (EBF2, EMX2/RAB11FIP2, VCL and FAM9A/FAM9B) that are specific to men. Functional experiments demonstrated that several of the associated regions (EFEMP1 and LYPLAL1-SLC30A10) function as enhancers and show differential activity between risk and reference alleles. Our study highlights the importance of large-scale genomic studies in ancestrally diverse populations for identifying ancestry-specific inguinal hernia susceptibility loci and provides novel biological insights into inguinal hernia etiology.


Asunto(s)
Hernia Inguinal , Pueblo Asiatico , Población Negra/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Genoma , Estudio de Asociación del Genoma Completo , Hernia Inguinal/genética , Hernia Inguinal/cirugía , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino
10.
Angiogenesis ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842752

RESUMEN

Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages. However, due to a lack of proper models, the expected role of angiogenesis in the metastatic dissemination of CoM is still unknown. We show that cells derived from two CoM cell lines induce a strong angiogenic response when xenografted in zebrafish larvae. CoM cells are highly glycolytic and secrete lactate, which recruits and polarizes human and zebrafish macrophages towards a M2-like phenotype. These macrophages elevate the levels of proangiogenic factors such as VEGF, TGF-ß, and IL-10 in the tumor microenvironment to induce an angiogenic response towards the engrafted CoM cells in vivo. Chemical ablation of zebrafish macrophages or inhibition of glycolysis in CoM cells terminates this response, suggesting that attraction of lactate-dependent macrophages into engrafted CoM cells drives angiogenesis and serves as a possible dissemination mechanism for glycolytic CoM cells.

11.
Br J Haematol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367620

RESUMEN

Due to the limited real-world research on the application of avatrombopag (AVA) for immune thrombocytopenia (ITP) in China, we evaluated the effectiveness and safety of AVA in clinical practice. We included 121 adult ITP patients treated with AVA across three medical centres. Based on the reasons for choosing AVA, these patients were divided into eltrombopag (ELT)/hetrombopag (HET) intolerance group (IG), and ELT/HET unresponsive group (UG). Compared with UG, more patients in IG had a history of liver disease and received fewer treatments before AVA. Amongst all patients, 83% had platelet response (≥30 × 109/L) after AVA and 62% achieved complete response (≥100 × 109/L, CR). Sixty-two percent in IG and 56% in UG were able to discontinue more than one concomitant ITP medication. A total of 17 patients underwent multiple switches of thrombopoietin receptor agonists (TPO-RAs), resulting in an 88% platelet response rate. Sixty-three patients discontinued AVA, 27% were due to unaffordability. AVA was well tolerated in most patients. In the ITP population, AVA proved effective and safe, particularly in patients intolerant or unresponsive to ELT/HET. Patients benefited from TPO-RAs switches, particularly those undergoing multiple switches. However, many patients struggled with the long-term financial burden of AVA.

12.
Small ; 20(28): e2307326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415917

RESUMEN

Among pyroelectric materials, Bi0.5Na0.5TiO3 (BNT)-based relaxors are particularly noteworthy due to their significant polarization fluctuation near the depolarization temperature (Td), resulting in a large pyroelectric response. What has been overlooked is the dynamic behavior of inherent polar structures, particularly the temperature-dependent evolution of polar nanoregions (PNRs), which significantly impacts the pyroelectric behavior. Herein, based on the large pyroelectric response origination (the ferroelectric-relaxor phase transition), the mixed nonergodic and ergodic relaxor (NR+ER) critical state is constructed, which is believed to trigger the easily fluctuating polarization state with excellent pyroelectric response. Composition engineering (with Li+, Sr2+, and Ta5+) strategically controls the relaxor process and modulates the dynamic behavior of inherent polar structures by the random field effect. The pyroelectric coefficient of more than 1441 µCm-2K-1 at room temperature (RT), more than 9221 µCm-2K-1 (RT), and ≈107911 µCm-2K-1 (Td) are achieved in the Li+-doped sample, the Sr2+-doped sample, and the (Li++Ta5+) co-doped sample, respectively. This work earns the highest RT pyroelectric coefficient in BNT-based relaxors, which is suitable for pyroelectric applications. Furthermore, it provides a strategy for modulating the pyroelectric performance of BNT-based relaxors.

13.
Small ; : e2402812, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350464

RESUMEN

Oxidative stress is a major factor leading to inflammation and disease occurrence, and superoxide dismutase (SOD) is a crucial antioxidative metalloenzyme capable of alleviating oxidative stress. In this study, a novel thermostable SOD gene is obtained from the Hydrogenobacter thermophilus strain (HtSOD), transformed and efficiently expressed in Escherichia coli with an activity of 3438 U mg-1, exhibiting excellent thermal stability suitable for scalable production. However, the activity of HtSOD is reduced to less than 10% under the acidic environment. To address the acid resistance and gastrointestinal stability issues, a biomimetic mineralization approach is employed to encapsulate HtSOD within the ZIF-8 (HtSOD@ZIF-8). Gastrointestinal simulation results show that HtSOD@ZIF-8 maintained 70% activity in simulated gastric fluid for 2 h, subsequently recovering to 97% activity in simulated intestinal fluid. Cell and in vivo experiments indicated that HtSOD@ZIF-8 exhibited no cytotoxicity and do not impair growth performance. Furthermore, HtSOD@ZIF-8 increased the relative abundance of beneficial microbiota such as Dubosiella and Alistipes, mitigated oxonic stress and intestinal injury by reducing mitochondrial and total reactive oxygen species (ROS) levels in diquat-induced. Together, HtSOD@ZIF-8 maintains and elucidates activity in the intestine and biocompatibility, providing insights into alleviating oxidative stress in hosts and paving the way for scalable production.

14.
J Pharmacol Exp Ther ; 390(2): 240-249, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38902033

RESUMEN

Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.


Asunto(s)
Degranulación de la Célula , Mastocitos , Infarto del Miocardio , Oxitocina , Ratas Sprague-Dawley , Receptores de Oxitocina , Sistema Nervioso Simpático , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratas , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Masculino , Degranulación de la Célula/efectos de los fármacos , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/antagonistas & inhibidores , Ratones , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología
15.
Phys Rev Lett ; 133(5): 051401, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39159086

RESUMEN

Spin and mass properties provide essential clues in distinguishing the origins of coalescing black holes (BHs). With a dedicated semiparametric population model for the coalescing binary black holes (BBHs), we identify two distinct categories of BHs among the GWTC-3 events, which is favored over the one population scenario by a logarithmic Bayes factor (lnB) of 7.5. One category, with a mass ranging from ∼25M_{⊙} to ∼80M_{⊙}, is distinguished by the high spin magnitudes (∼0.75) and consistent with the hierarchical merger origin. The other category, characterized by low spins, has a sharp mass cutoff at ∼40M_{⊙}, which is natural for the stellar-collapse origin and in particular the pair-instability explosion of massive stars. We infer the local hierarchical merger rate density as 0.46_{-0.24}^{+0.61} Gpc^{-3} yr^{-1}. Additionally, we find that a fraction of the BBHs has a cosine-spin-tilt-angle distribution concentrated preferentially around 1, and the fully isotropic distribution for spin orientation is disfavored by a lnB of -6.3, suggesting that the isolated field evolution channels are contributing to the total population.

16.
Phys Rev Lett ; 133(11): 116303, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39331964

RESUMEN

In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the Wiedemann-Franz law in such systems, with the Lorenz number L∝|T|^{-2}. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.

17.
Eur Radiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760508

RESUMEN

OBJECTIVES: To investigate the value of extracellular volume (ECV) fraction and fat fraction (FF) derived from dual- energy CT (DECT) for predicting postpancreatectomy acute pancreatitis (PPAP) after pancreatoduodenectomy (PD). METHODS: This retrospective study included patients who underwent DECT and PD between April 2022 and September 2022. PPAP was determined according to the International Study Group for Pancreatic Surgery (ISGPS) definition. Iodine concentration (IC) and FF of the pancreatic parenchyma were measured on preoperative DECT. The ECV fraction was calculated from iodine map images of the equilibrium phase. The independent predictors for PPAP were assessed by univariate and multivariable logistic regression analysis and receiver operating characteristic (ROC) curve analysis. RESULTS: Sixty-nine patients were retrospectively enrolled (median age, 60 years; interquartile range, 55-70 years; 47 men). Of these, nine patients (13.0%) developed PPAP. These patients had lower portal venous phase IC, equilibrium phase IC, FF, and ECV fraction, and higher pancreatic parenchymal-to-portal venous phase IC ratio and pancreatic parenchymal-to-equilibrium phase IC ratio, compared with patients without PPAP. After multivariable analysis, ECV fraction was independently associated with PPAP (odd ratio [OR], 0.87; 95% confidence interval [CI]: 0.79, 0.96; p < 0.001), with an area under the curve (AUC) of 0.839 (sensitivity 100.0%, specificity 58.3%). CONCLUSIONS: A lower ECV fraction is independently associated with the occurrence of PPAP after PD. ECV fraction may serve as a potential predictor for PPAP after PD. CLINICAL RELEVANCE STATEMENT: DECT-derived ECV fraction of pancreatic parenchyma is a promising biomarker for surgeons to preoperatively identify patients with higher risk for postpancreatectomy acute pancreatitis after PD and offer selective perioperative management. KEY POINTS: PPAP is a complication of pancreatic surgery, early identification of higher-risk patients allows for risk mitigation. Lower DECT-derived ECV fraction was independently associated with the occurrence of PPAP after PD. DECT aids in preoperative PAPP risk stratification, allowing for appropriate treatment to minimize complications.

18.
J Org Chem ; 89(2): 1209-1219, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38192075

RESUMEN

Guided by the Global Natural Products Social (GNPS) molecular networking strategy, five undescribed eremophilane-type sesquiterpenoid derivatives (1-5) were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of plant Hypericum beanii collected in Shennongjia Forestry District, Hubei Province. Dipeniroqueforins A-B (1-2), representing a lactam-type sesquiterpenoid skeleton with a highly symmetrical and homodimeric 5/6/6-6/6/5 hexacyclic system, are reported within the eremophilane-type family for the first time. Peniroqueforin D (5) represents the first example of a 1,2-seco eremophilane-type sesquiterpenoid derivative featuring an undescribed 7/6-fused ring system. The structures of these compounds were elucidated by various spectroscopic analyses, DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, these isolates were evaluated for cytotoxicity, and the result uncovered that compound 1 displayed broad-spectrum activity. Further mechanistic study revealed that compound 1 could significantly upregulate the mRNA expression of genes related to the oxidative induction, leading to the abnormal ROS levels in tumor cells and ultimately causing tumor cell apoptosis.


Asunto(s)
Antineoplásicos , Penicillium , Sesquiterpenos , Sesquiterpenos Policíclicos , Estructura Molecular , Sesquiterpenos/química , Penicillium/química , Antineoplásicos/química
19.
J Immunol ; 208(2): 347-357, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911773

RESUMEN

Although the mechanism of NK cell activation is still unclear, the strict calcium dependence remains the hallmark for lytic granule secretion. A plethora of studies claiming that impaired Ca2+ signaling leads to severely defective cytotoxic granule exocytosis accompanied by weak target cell lysis has been published. However, there has been little discussion about the effect of induced calcium signal on NK cell cytotoxicity. In our study, we observed that small-molecule inhibitor UNC1999, which suppresses global H3K27 trimethylation (H3K27me3) of human NK cells, induced a PKD2-dependent calcium signal. Enhanced calcium entry led to unbalanced vesicle release, which resulted into fewer target cells acquiring lytic granules and subsequently being killed. Further analyses revealed that the ability of conjugate formation, lytic synapse formation, and granule polarization were normal in NK cells treated with UNC1999. Cumulatively, these data indicated that induced calcium signal exclusively enhances unbalanced degranulation that further inhibits their cytotoxic activity in human NK cells.


Asunto(s)
Señalización del Calcio/fisiología , Degranulación de la Célula/inmunología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Células Asesinas Naturales/inmunología , Canales Catiónicos TRPP/metabolismo , Benzamidas/farmacología , Calcio/metabolismo , Línea Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Humanos , Indazoles/farmacología , Activación de Linfocitos/inmunología , Metilación , Piperazinas/farmacología , Piridonas/farmacología
20.
Philos Trans A Math Phys Eng Sci ; 382(2283): 20240010, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370801

RESUMEN

We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda