Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
Phys Rev Lett ; 133(5): 050605, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39159083

RESUMEN

We propose a fault-tolerant quantum computation scheme in a measurement-based manner with finite-sized entangled resource states and encoded-fusion scheme with linear optics. The encoded fusion is an entangled measurement devised to enhance the fusion success probability in the presence of losses and errors based on a quantum error-correcting code. We apply an encoded-fusion scheme, which can be performed with linear optics and active feedforwards to implement the generalized Shor code, to construct a fault-tolerant network configuration in a three-dimensional Raussendorf-Harrington-Goyal lattice based on the surface code. Numerical simulations show that our scheme allows us to achieve up to 10 times higher loss thresholds than nonencoded fusion approaches with limited numbers of photons used in fusion. Our scheme paves an efficient route toward fault-tolerant quantum computing with finite-sized entangled resource states and linear optics.

2.
J Dairy Sci ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969005

RESUMEN

Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.

3.
Gene Ther ; 30(7-8): 628-640, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36935427

RESUMEN

Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.


Asunto(s)
MicroARNs , Nanopartículas , Retinitis Pigmentosa , Ratones , Animales , Humanos , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Modelos Animales de Enfermedad , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Genómica , MicroARNs/genética , Mutación
4.
Biotechnol Bioeng ; 120(2): 511-523, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321324

RESUMEN

To realize lignocellulose-based bioeconomy, efficient conversion of xylose into valuable chemicals by microbes is necessary. Xylose oxidative pathways that oxidize xylose into xylonate can be more advantageous than conventional xylose assimilation pathways because of fewer reaction steps without loss of carbon and ATP. Moreover, commodity chemicals like 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone can be produced from the intermediates of xylose oxidative pathway. However, successful implementations of xylose oxidative pathway in yeast have been hindered because of the secretion and accumulation of xylonate which is a key intermediate of the pathway, leading to low yield of target product. Here, high-yield production of 3,4-dihydroxybutyrate from xylose by engineered yeast was achieved through genetic and environmental perturbations. Specifically, 3,4-dihydroxybutyrate biosynthetic pathway was established in yeast through deletion of ADH6 and overexpression of yneI. Also, inspired by the mismatch of pH between host strain and key enzyme of XylD, alkaline fermentations (pH ≥ 7.0) were performed to minimize xylonate accumulation. Under the alkaline conditions, xylonate was re-assimilated by engineered yeast and combined product yields of 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone resulted in 0.791 mol/mol-xylose, which is highest compared with previous study. These results shed light on the utility of the xylose oxidative pathway in yeast.


Asunto(s)
Saccharomyces cerevisiae , Xilosa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Ingeniería Metabólica/métodos , Fermentación
5.
Nature ; 605(7911): 624-625, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614238
6.
Appl Microbiol Biotechnol ; 107(12): 3869-3875, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148338

RESUMEN

L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Fucosa/metabolismo , Ácidos Grasos Volátiles/metabolismo , Azúcares
7.
Appl Microbiol Biotechnol ; 107(24): 7427-7438, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812254

RESUMEN

A novel metabolic pathway of 3,6-anhydro-L-galactose (L-AHG), the main sugar component in red macroalgae, was first discovered in the marine bacterium Vibrio sp. EJY3. L-AHG is converted to 2-keto-3-deoxy-galactonate (KDGal) in two metabolic steps. Here, we identified the enantiomeric nature of KDGal in the L-AHG catabolic pathway via stereospecific enzymatic reactions accompanying the biosynthesis of enantiopure L-KDGal and D-KDGal. Enantiopure L-KDGal and D-KDGal were synthesized by enzymatic reactions derived from the fungal galacturonate and bacterial oxidative galactose pathways, respectively. KDGal, which is involved in the L-AHG pathway, was also prepared. The results obtained from the reactions with an L-KDGal aldolase, specifically acting on L-KDGal, showed that KDGal in the L-AHG pathway exists in an L-enantiomeric form. Notably, we demonstrated the utilization of L-KDGal by Escherichia coli for the first time. E. coli cannot utilize L-KDGal as the sole carbon source. However, when a mixture of L-KDGal and D-galacturonate was used, E. coli utilized both. Our study suggests a stereoselective method to determine the absolute configuration of a compound. In addition, our results can be used to explore the novel L-KDGal catabolic pathway in E. coli and to construct an engineered microbial platform that assimilates L-AHG or L-KDGal as substrates. KEY POINTS: • Stereospecific enzyme reactions were used to identify enantiomeric nature of KDGal • KDGal in the L-AHG catabolic pathway exists in an L-enantiomeric form • E. coli can utilize L-KDGal as a carbon source when supplied with D-galacturonate.


Asunto(s)
Galactosa , Algas Marinas , Galactosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Redes y Vías Metabólicas , Algas Marinas/metabolismo , Carbono
8.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37410619

RESUMEN

Production of second-generation ethanol from lignocellulosic residues should be fueling the energy matrix in the near future. Lignocellulosic biomass has received considerable attention as an alternative renewable resource toward reducing the demand for fossil energy sources, contributing to a future sustainable bio-based economy. Fermentation of lignocellulosic hydrolysates poses many scientific and technological challenges as the drawback of Saccharomyces cerevisiae's inability in fermenting pentose sugars (derived from hemicellulose). To overcome the inability of S. cerevisiae to ferment xylose and increase yeast robustness in the presence of inhibitory compound-containing media, the industrial S. cerevisiae strain SA-1 was engineered using CRISPR-Cas9 with the oxidoreductive xylose pathway from Scheffersomyces stipitis (encoded by XYL1, XYL2, and XYL3). The engineered strain was then cultivated in a xylose-limited chemostat under increasing dilution rates (for 64 days) to improve its xylose consumption kinetics under aerobic conditions. The evolved strain (DPY06) and its parental strain (SA-1 XR/XDH) were evaluated under microaerobic in a hemicellulosic hydrolysate-based medium. DPY06 exhibited 35% higher volumetric ethanol productivity compared to its parental strain.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Xilosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo
9.
Mar Drugs ; 21(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367665

RESUMEN

Agarobiose (AB; d-galactose-ß-1,4-AHG), produced by one-step acid hydrolysis of agarose of red seaweed, is considered a promising cosmetic ingredient due to its skin-moisturizing activity. In this study, the use of AB as a cosmetic ingredient was found to be hampered due to its instability at high temperature and alkaline pH. Therefore, to increase the chemical stability of AB, we devised a novel process to synthesize ethyl-agarobioside (ethyl-AB) from the acid-catalyzed alcoholysis of agarose. This process mimics the generation of ethyl α-glucoside and glyceryl α-glucoside by alcoholysis in the presence of ethanol and glycerol during the traditional Japanese sake-brewing process. Ethyl-AB also showed in vitro skin-moisturizing activity similar to that of AB, but showed higher thermal and pH stability than AB. This is the first report of ethyl-AB, a novel compound produced from red seaweed, as a functional cosmetic ingredient with high chemical stability.


Asunto(s)
Bebidas Alcohólicas , Algas Marinas , Sefarosa/química , Fermentación , Algas Marinas/química , Glucósidos
10.
Nano Lett ; 22(4): 1672-1679, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133163

RESUMEN

Engineering a strongly interacting uniform qubit cluster would be a major step toward realizing a scalable quantum system for quantum sensing and a node-based qubit register. For a solid-state system that uses a defect as a qubit, various methods to precisely position defects have been developed, yet the large-scale fabrication of qubits within the strong coupling regime at room temperature continues to be a challenge. In this work, we generate nitrogen vacancy (NV) color centers in diamond with sub-10 nm scale precision using a combination of nanoscale aperture arrays (NAAs) with a high aspect ratio of 10 and a secondary E-beam hole pattern used as an ion-blocking mask. We perform optical and spin measurements on a cluster of NV spins and statistically investigate the effect of the NAAs during an ion-implantation process. We discuss how this technique is effective for constructing a scalable system.

11.
Angew Chem Int Ed Engl ; 62(5): e202212440, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36398563

RESUMEN

Engineering enzymes with novel reactivity and applying them in metabolic pathways to produce valuable products are quite challenging due to the intrinsic complexity of metabolic networks and the need for high in vivo catalytic efficiency. Triacetic acid lactone (TAL), naturally generated by 2-pyrone synthase (2PS), is a platform molecule that can be produced via microbial fermentation and further converted into value-added products. However, these conversions require extra synthetic steps under harsh conditions. We herein report a biocatalytic system for direct generation of TAL derivatives under mild conditions with controlled chemoselectivity by rationally engineering the 2PS active site and then rewiring the biocatalytic pathway in the metabolic network of E. coli to produce high-value products, such as kavalactone precursors, with yields up to 17 mg/L culture. Computer modeling indicates sterics and hydrogen-bond interactions play key roles in tuning the selectivity, efficiency and yield.


Asunto(s)
Policétidos , Policétidos/metabolismo , Escherichia coli/metabolismo , Dominio Catalítico , Redes y Vías Metabólicas , Ingeniería Metabólica
13.
Opt Express ; 30(17): 30525-30535, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242154

RESUMEN

Quantum correlations between identical particles are at the heart of quantum technologies. Several studies with two identical particles have shown that the spatial overlap and indistinguishability between the particles are necessary for generating bipartite entanglement. On the other hand, researches on the extension to more than two-particle systems are limited by the practical difficulty to control multiple identical particles in laboratories. In this work, we propose schemes to generate two fundamental classes of genuine tripartite entanglement, i.e., GHZ and W classes, which are experimentally demonstrated using linear optics with three identical photons. We also show that the tripartite entanglement class decays from the genuine entanglement to the full separability as the particles become more distinguishable from each other. Our results support the prediction that particle indistinguishability is a fundamental element for entangling identical particles.

14.
Phys Rev Lett ; 128(5): 050401, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179912

RESUMEN

While an information-disturbance trade-off in quantum measurement has been at the core of foundational quantum physics and constitutes a basis of secure quantum information processing, recently verified reversibility of a quantum measurement requires to refine it toward a complete version of information trade-off in quantum measurement. Here we experimentally demonstrate a trade-off relation among all information contents, i.e., information gain, disturbance, and reversibility in quantum measurement. By exploring quantum measurements applied on a photonic qutrit, we observe that the information of a quantum state is split into three distinct parts accounting for the extracted, disturbed, and reversible information. We verify that such different parts of information are in trade-off relations not only pairwise but also triplewise all at once, and find that the triplewise relation is tighter than any of the pairwise relations. Finally, we realize optimal quantum measurements that inherently preserve quantum information without loss of information, which offer wider applications in measurement-based quantum information processing.

15.
FEMS Yeast Res ; 22(1)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35640892

RESUMEN

Sugar metabolism by Saccharomyces cerevisiae produces ample amounts of CO2 under both aerobic and anaerobic conditions. High solubility of CO2 in fermentation media, contributing to enjoyable sensory properties of sparkling wine and beers by S. cerevisiae, might affect yeast metabolism. To elucidate the overlooked effects of CO2 on yeast metabolism, we examined glucose fermentation by S. cerevisiae under CO2 as compared to N2 and O2 limited conditions. While both CO2 and N2 conditions are considered anaerobic, less glycerol and acetate but more ethanol were produced under CO2 condition. Transcriptomic analysis revealed that significantly decreased mRNA levels of GPP1 coding for glycerol-3-phosphate phosphatase in glycerol synthesis explained the reduced glycerol production under CO2 condition. Besides, transcriptional regulations in signal transduction, carbohydrate synthesis, heme synthesis, membrane and cell wall metabolism, and respiration were detected in response to CO2. Interestingly, signal transduction was uniquely regulated under CO2 condition, where upregulated genes (STE3, MSB2, WSC3, STE12, and TEC1) in the signal sensors and transcriptional factors suggested that MAPK signaling pathway plays a critical role in CO2 sensing and CO2-induced metabolisms in yeast. Our study identifies CO2 as an external stimulus for modulating metabolic activities in yeast and a transcriptional effector for diverse applications.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vino , Dióxido de Carbono/metabolismo , Fermentación , Glicerol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis
16.
Biotechnol Bioeng ; 119(2): 399-410, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850377

RESUMEN

Retinol is a fat-soluble vitamin A that is widely used in the food and pharmaceutical industries. Currently, retinol is commercially produced by chemical synthesis. Microbial production of retinol has been alternatively explored but restricted to a mixture of retinoids including retinol, retinal, and retinoic acid. Thus, we introduced heterologous retinol dehydrogenase into retinoids mixture-producing Saccharomyces cerevisiae for the selective production of retinol using xylose. Expression of human RDH10 and Escherichia coli ybbO led to increase in retinol production, but retinal remained as a major product. In contrast, S. cerevisiae harboring human RDH12 produced retinol selectively with negligible production of retinal. The resulting strain (SR8A-RDH12) produced retinol only. However, more glycerol was accumulated due to intracellular redox imbalance. Therefore, Lactococcus lactis noxE coding for H2 O-forming NADH oxidase was additionally introduced to resolve the redox imbalance. The resulting strain produced 52% less glycerol and more retinol with a 30% higher yield than a parental strain. As the produced retinol was not stable, we examined culture and storage conditions including temperature, light, and antioxidants for the optimal production of retinol. In conclusion, we achieved selective production of retinol efficiently from xylose by introducing human RDH12 and NADH oxidase into S. cerevisiae.


Asunto(s)
Oxidorreductasas de Alcohol , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Vitamina A , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitamina A/análisis , Vitamina A/genética , Vitamina A/metabolismo , Xilosa/metabolismo
17.
Microb Cell Fact ; 21(1): 204, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207743

RESUMEN

BACKGROUND: Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. RESULTS: To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize L-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized L-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on L-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating L-fucose. As a result, we found that the engineered S. boulardii consumes L-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. CONCLUSION: To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing L-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut.


Asunto(s)
Probióticos , Saccharomyces boulardii , Animales , Escherichia coli , Fucosa/metabolismo , Lactatos/metabolismo , Mamíferos , Análisis de Flujos Metabólicos , Mucinas/metabolismo , Oxígeno/metabolismo , Probióticos/metabolismo , Propilenglicol/metabolismo , Piruvatos/metabolismo , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Appl Microbiol Biotechnol ; 106(17): 5629-5642, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35906440

RESUMEN

Oleaginous yeasts have received significant attention due to their substantial lipid storage capability. The accumulated lipids can be utilized directly or processed into various bioproducts and biofuels. Lipomyces starkeyi is an oleaginous yeast capable of using multiple plant-based sugars, such as glucose, xylose, and cellobiose. It is, however, a relatively unexplored yeast due to limited knowledge about its physiology. In this study, we have evaluated the growth of L. starkeyi on different sugars and performed transcriptomic and metabolomic analyses to understand the underlying mechanisms of sugar metabolism. Principal component analysis showed clear differences resulting from growth on different sugars. We have further reported various metabolic pathways activated during growth on these sugars. We also observed non-specific regulation in L. starkeyi and have updated the gene annotations for the NRRL Y-11557 strain. This analysis provides a foundation for understanding the metabolism of these plant-based sugars and potentially valuable information to guide the metabolic engineering of L. starkeyi to produce bioproducts and biofuels. KEY POINTS: • L. starkeyi metabolism reprograms for consumption of different plant-based sugars. • Non-specific regulation was observed during growth on cellobiose. • L. starkeyi secretes ß-glucosidases for extracellular hydrolysis of cellobiose.


Asunto(s)
Biocombustibles , Celobiosa , Lípidos , Lipomyces , Azúcares , Levaduras
19.
Food Microbiol ; 104: 103971, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35287800

RESUMEN

While Cas9-based genome editing enabled precise and sophisticated genetic perturbations in conventional and non-conventional yeast strains, its applications for food fermentations have been extremely limited. In order to improve quality and flavor of various yeast-fermented foods, we isolated and engineered a diploid or polyploid Saccharomyces cerevisiae strain (N1) which exhibits robust sugar fermentation, strong acid tolerance, and rapid gas production from Korean Nuruk. First, RGT2 and SNF3 coding for glucose sensors were deleted to increase respiration. A bread dough fermented with the N1ΔRGT2ΔSNF3 strain showed an 18% increased volume due to higher carbon dioxide production. Second, ASP3 coding for asparaginase was overexpressed and URE2 coding for a transcriptional factor of nitrogen catabolite repression (NCR) was deleted to increase asparagine consumption. When the N1ΔURE2::PGPD-ASP3 strain was applied to a potato dough, asparagine was rapidly depleted in the dough, resulting in potato chips with negligible amounts of acrylamide. Third, the N1ΔURE2 strain was utilized to increase levels of the amino acids which provide a savory taste during rice wine fermentation. The above genome-edited yeast strains contain no heterologous DNA. As such, they can be used to improve fermented foods with no subjection to GM regulation.


Asunto(s)
Represión Catabólica , Priones , Proteínas de Saccharomyces cerevisiae , Vino , Pan , Fermentación , Glutatión Peroxidasa/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Priones/genética , Priones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis
20.
Metab Eng ; 66: 137-147, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887459

RESUMEN

In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae. A novel fungal SWEET, NcSWEET1, was identified that localized to the plasma membrane and complemented growth in a hexose transporter-deficient yeast strain. Single cross-over chimeras were constructed from a leading NcSWEET1 expression-enabling domain paired with all other candidate SWEETs to broadly scan the sequence and functional space for enhanced variants. This led to the identification of a chimera, NcSW1/PfSW2:TM5-7, that enhanced the growth rate significantly on glucose, fructose, and mannose. Additional chimeras with varied cross-over junctions identified residues in TM1 that affect substrate selectivity. Furthermore, we demonstrate that NcSWEET1 and the enhanced NcSW1/PfSW2:TM5-7 variant facilitated novel co-consumption of glucose and xylose in S. cerevisiae. NcSWEET1 utilized 40.1% of both sugars, exceeding the 17.3% utilization demonstrated by the control HXT7(F79S) strain. Our results suggest that SWEETs from anaerobic fungi are beneficial tools for enhancing glucose and xylose co-utilization and offers a promising step towards biotechnological application of SWEETs in S. cerevisiae.


Asunto(s)
Saccharomyces cerevisiae , Azúcares , Anaerobiosis , Quimera , Glucosa , Saccharomyces cerevisiae/genética , Xilosa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda