Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chem Res Toxicol ; 33(1): 154-161, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31461269

RESUMEN

Despite the recent advances in the life sciences and the remarkable investment in drug discovery research, the success rate of small-molecule drug development remains low. Safety is the second most influential factor of drug attrition in clinical studies; thus, the selection of compounds with fewer toxicity concerns is crucial to increase the success rate of drug discovery. Compounds that promiscuously bind to multiple targets are likely to cause unexpected pharmacological activity that may lead to adverse effects. Therefore, avoiding such compounds during early research stages would contribute to identifying compounds with a higher chance of success in the clinic. To evaluate the interaction profile against a wide variety of targets, we constructed a small-scale promiscuity panel (PP) consisting of eight targets (ROCK1, PDE4D2, GR, PPARγ, 5-HT2B, adenosine A3, M1, and GABAA) that were selected from diverse gene families. The validity of this panel was confirmed by comparison with the promiscuity index evaluated from larger-scale panels. Analysis of data from the PP revealed that both lipophilicity and basicity are likely to increase promiscuity, while the molecular weight does not significantly contribute. Additionally, the promiscuity assessed using our PP correlated with the occurrence of both in vitro cytotoxicity and in vivo toxicity, suggesting that the PP is useful to identify compounds with fewer toxicity concerns. In summary, this small-scale and cost-effective PP can contribute to the identification of safer compounds that would lead to a reduction in drug attrition due to safety issues.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Animales , Supervivencia Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Células Hep G2 , Humanos , Ratones , PPAR gamma/genética , Ratas , Receptor de Adenosina A3/genética , Receptor Muscarínico M1/genética , Receptor de Serotonina 5-HT2B/genética , Receptores de GABA-A/genética , Receptores de Glucocorticoides/genética , Quinasas Asociadas a rho/genética
2.
Bioorg Med Chem ; 26(2): 470-482, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29258712

RESUMEN

A series of tetrahydroisoquinoline derivatives were designed, synthesized, and evaluated for their potential as novel orally efficacious retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of Th17-driven autoimmune diseases. We carried out cyclization of the phenylglycinamide core by structure-based drug design and successfully identified a tetrahydroisoquinoline carboxylic acid derivative 14 with good biochemical binding and cellular reporter activity. Interestingly, the combination of a carboxylic acid tether and a central fused bicyclic ring was crucial for optimizing PK properties, and the compound 14 showed significantly improved PK profile. Successive optimization of the carboxylate tether led to the discovery of compound 15 with increased inverse agonistic activity and an excellent PK profile. Oral treatment of mice with compound 15 robustly and dose-dependently inhibited IL-17A production in an IL23-induced gene expression assay.


Asunto(s)
Descubrimiento de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Tetrahidroisoquinolinas/farmacología , Administración Oral , Animales , Cristalografía por Rayos X , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intradérmicas , Interleucina-23/administración & dosificación , Interleucina-23/farmacología , Células Jurkat , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Modelos Moleculares , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Relación Estructura-Actividad , Tetrahidroisoquinolinas/administración & dosificación , Tetrahidroisoquinolinas/química
3.
Bioorg Med Chem Lett ; 27(11): 2497-2501, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400232

RESUMEN

We previously reported a facile preparation method of 3-substituted-2,6-difluoropyridines, which were easily converted to 2,3,6-trisubstituted pyridines by nucleophilic aromatic substitution with good regioselectivity and yield. In this study, we demonstrate the synthetic utility of 3-substituted-2,6-difluoropyridines in drug discovery via their application in the synthesis of various 2,3,6-trisubstituted pyridines, including macrocyclic derivatives, as novel protein kinase C theta inhibitors in a moderate to good yield. This synthetic approach is useful for the preparation of 2,3,6-trisubstituted pyridines, which are a popular scaffold for drug candidates and biologically attractive compounds.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Piridinas/química , Diseño de Fármacos , Humanos , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química
4.
Bioorg Med Chem ; 24(14): 3207-17, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27255177

RESUMEN

Peripherally selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Herein, we describe our medicinal chemistry approach to discover peripheral-selective noradrenaline reuptake inhibitors to avert the risk of P-gp-mediated DDI at the blood-brain barrier. We observed that steric shielding of the hydrogen-bond acceptors and donors (HBA and HBD) of compound 1 reduced the multidrug resistance protein 1 (MDR1) efflux ratio; however, the resulting compound 6, a methoxyacetamide derivative, was mainly metabolized by CYP2D6 and CYP2C19 in the in vitro phenotyping study, implying the risk of PK variability based on the genetic polymorphism of the CYPs. Replacement of the hydrogen atom with a deuterium atom in a strategic, metabolically hot spot led to compound 13, which was mainly metabolized by CYP3A4. To our knowledge, this study represents the first report of the effect of deuterium replacement for a major metabolic enzyme. The compound 13, N-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-[(2H(3))methyloxy]acetamide hydrochloride, which exhibited peripheral NET selective inhibition at tested doses in rats, increased urethral resistance in a dose-dependent manner.


Asunto(s)
Inhibidores de la Captación de Neurotransmisores/química , Inhibidores de la Captación de Neurotransmisores/farmacología , Norepinefrina/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Inhibidores de la Captación de Neurotransmisores/síntesis química , Ratas , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 24(16): 3716-26, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27325446

RESUMEN

Peripheral-selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Here, we describe our medicinal chemistry approach to discover a novel series of highly potent, peripheral-selective, and orally available noradrenaline reuptake inhibitors with a low multidrug resistance protein 1 (MDR1) efflux ratio by cyclization of an amide moiety and introduction of an acidic group. We observed that the MDR1 efflux ratio was correlated with the pKa value of the acidic moiety. The resulting compound 9 exhibited favorable PK profiles, probably because of the effect of intramolecular hydrogen bond, which was supported by a its single-crystal structure. The compound 9, 1-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-oxo-1,2-dihydropyridine-3-carboxylic acid hydrochloride, which exhibited peripheral NET-selective inhibition at tested doses in rats by oral administration, increased urethral resistance in a dose-dependent manner.


Asunto(s)
Inhibidores de la Captación de Neurotransmisores/química , Inhibidores de la Captación de Neurotransmisores/farmacología , Norepinefrina/metabolismo , Animales , Células CHO , Cricetulus , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Enlace de Hidrógeno , Espectrometría de Masas , Estructura Molecular , Inhibidores de la Captación de Neurotransmisores/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Sprague-Dawley
6.
Bioorg Med Chem ; 23(15): 5000-5014, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26051602

RESUMEN

Centrally acting noradrenaline reuptake inhibitor (NRI) is reportedly effective for patients with stress urinary incontinence (SUI) by increasing urethral closure in the clinical Phase IIa study with esreboxetine. Noradrenaline transporters are expressed in both central and peripheral nervous systems and the contribution of each site to efficacy has not been clarified. This report describes the development of a series of peripheral-selective 7-phenyl-1,4-oxazepane NRIs to investigate the contribution of the peripheral site to increasing urethral resistance in rats. (6S,7R)-1,4-Oxazepane derivative 7 exhibited noradrenaline transporter inhibition with high selectivity against inhibitions of serotonin and dopamine transporters. A replacement of hydroxyl with acetamide group contributed to enhancement of peripheral selectivity by increasing molecular polarity. Compound 12, N-{[(6S,7R)-7-(3,4-dichlorophenyl)-1,4-oxazepan-6-yl]methyl}acetamide 0.5 fumarate, which showed effectively no brain penetration in rats, increased urethral resistance in a dose-dependent manner and exhibited a maximal effect on par with esreboxetine. These results demonstrate that the urethral resistance-increasing effects of NRI in rats are mainly caused by the inhibition of noradrenaline transporters in the peripheral sites.


Asunto(s)
Diseño de Fármacos , Compuestos Heterocíclicos/química , Inhibidores de Captación de Serotonina y Norepinefrina/síntesis química , Animales , Corteza Cerebral/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/uso terapéutico , Humanos , Conformación Molecular , Morfolinas/uso terapéutico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/química , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Estereoisomerismo , Relación Estructura-Actividad , Incontinencia Urinaria de Esfuerzo/tratamiento farmacológico
7.
ALTEX ; 39(4): 560-582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502629

RESUMEN

Drug-induced neurotoxicity is a leading cause of safety-related attrition for therapeutics in clinical trials, often driven by poor predictivity of preclinical in vitro and in vivo models of neurotoxicity. Over a dozen different iPSC-derived 3D spheroids have been described in recent years, but their ability to predict neurotoxicity in patients has not been evaluated nor compared with the predictive power of nonclinical species. To assess the predictive capabilities of human iPSC-derived neural spheroids (microBrains), we used 84 structurally diverse pharmaceuticals with robust clinical and pre-clinical datasets with varying degrees of seizurogenic and neurodegenerative liability. Drug-induced changes in neural viability and phenotypic calcium bursts were assessed using 7 endpoints based on calcium oscillation profiles and cel-lular ATP levels. These endpoints, normalized by therapeutic exposure, were used to build logistic regression models to establish endpoint cutoffs and evaluate probability for clinical neurotoxicity. The neurotoxicity score calculated from the logistic regression model could distinguish neurotoxic from non-neurotoxic clinical molecules with a specificity as high as 93.33% and a sensitivity of 53.49%, demonstrating a very low false positive rate for the prediction of seizures, convulsions, and neurodegeneration. In contrast, nonclinical species showed a higher sensitivity (75%) but much lower specificity (30.4%). The neural spheroids demonstrated higher likelihood ratio positive and inverse likelihood ratio neg-ative values compared with nonclinical safety studies. This assay has the potential to be used as a predictive assay to detect neurotoxicity in early drug discovery, aiding in the early identification of compounds that eventually may fail due to neurotoxicity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Humanos , Síndromes de Neurotoxicidad/etiología , Convulsiones/inducido químicamente , Señalización del Calcio , Preparaciones Farmacéuticas
8.
Toxicol In Vitro ; 74: 105159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33823239

RESUMEN

Here, we established a high-throughput in vitro assay system to predict reactive metabolite (RM) formation. First, we performed the glutathione (GSH) consumption assay to monitor GSH levels as an index of RM formation potential using HepaRG cells pretreated with 500 µM D,L-buthionine-(S,R)-sulfoximine (BSO) and then treated with ticlopidine and diclofenac. Both drugs, under GSH-reduced conditions, significantly decreased relative cellular GSH content by 70% and 34%, respectively, compared with that in cells not pretreated with BSO. Next, we examined the correlation between GSH consumption and covalent binding assays; the results showed good correlation (correlation coefficient = 0.818). We then optimized the test compound concentration for evaluating RM formation potential using 76 validation compound sets, and the highest sensitivity (53%) was observed at 100 µM. Finally, using HepG2 cells, PXB-cells, and human primary hepatocytes, we examined the cell types suitable for evaluating RM formation potential. The expression of CYP3A4 was highest in HepaRG cells, suggesting the highest sensitivity (56.4%) of the GSH consumption assay. Moreover, a co-culture model of PXB-cells and HepaRG cells showed high sensitivity (72.7%) with sufficient specificity (85.7%). Thus, the GSH consumption assay can be used to effectively evaluate RM formation potential in the early stages of drug discovery.


Asunto(s)
Activación Metabólica , Glutatión/metabolismo , Ensayos Analíticos de Alto Rendimiento , Aspirina/toxicidad , Butionina Sulfoximina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Sistema Enzimático del Citocromo P-450/metabolismo , Diclofenaco/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Ticlopidina/toxicidad
9.
ACS Med Chem Lett ; 11(2): 203-209, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32071689

RESUMEN

The role that physicochemical properties play toward increasing the likelihood of toxicity findings in in vivo studies has been well reported, albeit sometimes with different conclusions. We decided to understand the role that physicochemical properties play toward the prediction of in vivo toxicological outcomes for Takeda chemistry using 284 internal compounds. In support of the previously reported "3/75 rule", reducing lipophilicity of molecules decreases toxicity odds noticeably; however, we also found that the trend of toxicity odds is different between compounds classified by their ionization state. For basic molecules, the odds of in vivo toxicity outcomes were significantly impacted by both lipophilicity and polar surface area, whereas neutral molecules were impacted less so. Through an analysis of several project-related compounds, we herein demonstrate that the utilization of the 3/75 rule coupled with consideration of ionization state is a rational strategy for medicinal chemistry design of safer drugs.

10.
Toxicol Lett ; 331: 227-234, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522578

RESUMEN

An important mechanism of chemical toxicity is the induction of oxidative stress through the production of excess reactive oxygen species (ROS). In this study, we show that the level of drug-induced ROS production between NRK52E and HepG2 cells is significantly different for several marketed drugs and a number of Takeda's internal proprietary compounds. Nifedipine, a calcium channel blocker and the initial focus of the study, was demonstrated to promote in vitro ROS production and a decrease in cell viability in NRK52E cells but not HepG2 cells. ROS production after nifedipine treatment was inhibited by a NOX inhibitor (GKT136901) but not the mitochondrial NADH dehydrogenase inhibitor, rotenone, suggesting that nifedipine decreases NRK52E cell viability primarily through a NOX-mediated pathway. To understand the breadth of NOX-mediated ROS production, 12 commercially available compounds that are structurally and/or pharmacologically related to nifedipine as well as 172 internal Takeda candidate drugs, were also evaluated against these two cell types. Over 15 % of compounds not cytotoxic to HepG2 cells (below 50 µM) were cytotoxic to NRK52E cells. Our results suggest that a combination of cell viability data from both NRK52E and HepG2 cells was superior for the prediction of in vivo toxicity findings when compared to use of only one cell line. Further, the NRK52E cell viability assay is a good predictor of NOX-mediated ROS production and can be used as a follow up assay following a negative HepG2 response to aid in the selection of suitable compounds for in vivo toxicity studies.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Riñón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Bioensayo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Drogas en Investigación/toxicidad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Riñón/metabolismo , Riñón/patología , NADPH Oxidasa 4/genética , Nifedipino/toxicidad
11.
Toxicology ; 442: 152535, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32622972

RESUMEN

Drug induced kidney injury (DIKI) is a common reason for compound attrition in drug development pipelines with proximal tubule epithelial cells (PTECs) most commonly associated with DIKI. Here, we investigated freshly isolated human (hPTECs) as an in vitro model for assessing renal tubular toxicity. The freshly isolated hPTECs were first characterized to confirm gene expression of important renal transporters involved in drug handling which was further corroborated by confirming the functional activity of organic cation transporter 2 and organic anion transporter 1 by using transporter specific inhibitors. Additionally, functionality of megalin/cubilin endocytic receptors was also confirmed. A training set of 36 compounds was used to test the ability of the model to classify them using six different endpoints which included three biomarkers (Kidney Injury Molecule-1, Neutrophil gelatinase-associated lipocalin, and Clusterin) and three non-specific injury endpoints (ATP depletion, LDH leakage, and barrier permeability via transepithelial electrical resistance) in a dose-dependent manner across two independent kidney donors. In general, biomarkers showed higher predictivity than non-specific endpoints, with Clusterin showing the highest predictivity (Sensitivity/Specificity - 65.0/93.8 %). By using the thresholds generated from the training set, nine candidate internal Takeda compounds were screened where PTEC toxicity was identified as one of the findings in preclinical animal studies. The model correctly classified four of six true positives and two of three true negatives, showing validation of the in vitro model for detection of tubular toxicants. This work thus shows the potential application of freshly isolated primary hPTECs using translational biomarkers in assessment of tubular toxicity within the drug discovery pipeline.


Asunto(s)
Síndrome de Fanconi/inducido químicamente , Síndrome de Fanconi/patología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/patología , Cultivo Primario de Células/métodos , Biomarcadores/análisis , Determinación de Punto Final , Síndrome de Fanconi/genética , Expresión Génica/genética , Humanos , Factor 1 de Transcripción de Unión a Octámeros/genética , Transportador 2 de Cátion Orgánico/genética , Reproducibilidad de los Resultados
12.
J Am Chem Soc ; 131(31): 10964-73, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19722672

RESUMEN

Allyl cyanides are found to add across alkynes in the presence of a nickel/P(4-CF(3)-C(6)H(4))(3) catalyst to give polysubstituted 2,5-hexadienenitriles with defined stereo- and regiochemistry. Use of AlMe(2)Cl or AlMe(3) as a Lewis acid cocatalyst accelerates the reaction and expands the substrate scope significantly. The cyano group in the allylcyanation products can be transformed to a hydroxymethyl or aminomethyl group to afford highly substituted allylic alcohols or amines. Alpha-siloxyallyl cyanides also add across alkynes selectively at the less hindered gamma-carbon to allow introduction of 3-oxo-propyl functionality after hydrolysis of the resulting silyl enol ethers. This particular carbocyanation reaction has been applied to the stereoselective construction of the trisubstituted double bond of plaunotol, an antibacterial natural product active against Helicobacter pylori.

13.
Chem Commun (Camb) ; (26): 3931-3, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19662256

RESUMEN

Nickel/Lewis acid dual catalysis was found to effect the carbocyanation reaction of alkynes using arylacetonitriles, giving a range of triply substituted acrylonitriles; the reaction of optically active alpha-phenylpropionitrile suggested a reaction mechanism that involves oxidative addition of a C-CN bond with retention of its absolute configuration.

14.
J Med Chem ; 62(3): 1167-1179, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30652849

RESUMEN

Retinoic acid receptor-related orphan receptor γt (RORγt) agonists are expected to provide a novel class of immune-activating anticancer drugs via activation of Th17 cells and Tc17 cells. Herein, we describe a novel structure-based functionality switching approach from in house well-optimized RORγt inverse agonists to potent RORγt agonists. We succeeded in the identification of potent RORγt agonist 5 without major chemical structure change. The biochemical response was validated by molecular dynamics simulation studies that showed a helix 12 stabilization effect of RORγt agonists. These results indicate that targeting helix 12 is an attractive and novel medicinal chemistry strategy for switching existing RORγt inverse agonists to agonists.


Asunto(s)
Diseño de Fármacos , Agonismo Inverso de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Animales , Ensayos Analíticos de Alto Rendimiento , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Células Th17/efectos de los fármacos
15.
J Med Chem ; 61(7): 2973-2988, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29510038

RESUMEN

A series of tetrahydronaphthyridine derivatives as novel RORγt inverse agonists were designed and synthesized. We reduced the lipophilicity of tetrahydroisoquinoline compound 1 by replacement of the trimethylsilyl group and SBDD-guided scaffold exchange, which successfully afforded compound 7 with a lower log  D value and tolerable in vitro activity. Consideration of LLE values in the subsequent optimization of the carboxylate tether led to the discovery of [ cis-3-({(5 R)-5-[(7-fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5 H)-yl}carbonyl)cyclobutyl]acetic acid, TAK-828F (10), which showed potent RORγt inverse agonistic activity, excellent selectivity against other ROR isoforms and nuclear receptors, and a good pharmacokinetic profile. In animal studies, oral administration of compound 10 exhibited robust and dose-dependent inhibition of IL-17A cytokine expression in a mouse IL23-induced gene expression assay. Furthermore, development of clinical symptoms in a mouse experimental autoimmune encephalomyelitis model was significantly reduced. Compound 10 was selected as a clinical compound for the treatment of Th17-driven autoimmune diseases.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Receptores de Ácido Retinoico/agonistas , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Descubrimiento de Drogas , Agonismo Inverso de Drogas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidad p19 de la Interleucina-23/genética , Subunidad p19 de la Interleucina-23/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Células Th17/inmunología
16.
J Am Chem Soc ; 128(22): 7116-7, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16734437

RESUMEN

Allyl cyanides are found to add across alkynes in the presence of a nickel catalyst prepared from Ni(cod)2 and P(4-CF3-C6H4)3 in situ to give variously functionalized di- or trisubstituted acrylonitriles in highly stereoselective manners possibly via a pi-allylnickel species as an intermediate. alpha-Siloxyallyl cyanides also react at the gamma-position of a cyano group with both internal and terminal alkynes having various functional groups to give silyl enol ethers, which give the corresponding aldehydes or ketones upon hydrolysis.

17.
J Am Chem Soc ; 126(48): 15650-1, 2004 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-15571380

RESUMEN

Palladium-iminophosphine complex catalyzes stannylative cycloaddition of conjugated enynes using hexabutyldistannoxane as a stannylating agent to afford highly substituted 3-alkenylphenylstannanes regioselectively. Stannylative cross-cycloaddition reactions between different enynes or between enynes and diynes are also achieved. The reaction is successfully applied to a concise synthesis of alcyopterosin N, which has been isolated recently from sub-Antarctic soft coral, Alcyonium paessleri.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda