RESUMEN
Pervasive environmental pollutants, specifically particulate matter (PM2.5), possess the potential to disrupt homeostasis of female thyroid hormone (TH). However, the precise mechanism underlying this effect remains unclear. In this study, we established a model of PM2.5-induced thyroid damage in female rats through intratracheal instillation and employed histopathological and molecular biological methods to observe the toxic effects of PM2.5 on the thyroid gland. Transcriptome gene analysis and 16S rRNA sequencing were utilized to investigate the impact of PM2.5 exposure on the female rat thyroid gland. Furthermore, based on the PM2.5-induced toxic model in female rats, we evaluated its effects on intestinal microbiota, TH levels, and indicators of thyroid function. The findings revealed that PM2.5 exposure induced histopathological damage to thyroid tissue by disrupting thyroid hormone levels (total T3 [TT3], (P < 0.05); total T4 [TT4], (P < 0.05); and thyrotropin hormone [TSH], (P < 0.05)) and functional indices (urine iodine [UI], P > 0.05), thus further inducing histopathological injuries. Transcriptome analysis identified differentially expressed genes (DEGs), primarily concentrated in interleukin 17 (IL-17), forkhead box O (FOXO), and other signaling pathways. Furthermore, exposure to PM2.5 altered the composition and abundance of intestinal microbes. Transcriptome and microbiome analyses demonstrated a correlation between the DEGs within these pathways and the flora present in the intestines. Moreover, 16â¯S rRNA gene sequencing analysis or DEGs combined with thyroid function analysis revealed that exposure to PM2.5 significantly induced thyroid hormone imbalance. We further identified key DEGs involved in thyroid function-relevant pathways, which were validated using molecular biology methods for clinical applications. In conclusion, the homeostasis of the "gut-thyroid" axis may serve as the underlying mechanism for PM2.5-induced thyrotoxicity in female rats.
Asunto(s)
Material Particulado , Glándula Tiroides , Transcriptoma , Animales , Femenino , Material Particulado/toxicidad , Ratas , Transcriptoma/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/patología , Hormonas Tiroideas , Contaminantes Atmosféricos/toxicidad , Ratas Sprague-Dawley , Microbioma Gastrointestinal/efectos de los fármacos , ARN Ribosómico 16SRESUMEN
BACKGROUND: The effects of metal exposure on semen quality and the role of oxidative damage in this process remain unclear. METHODS: We recruited 825 Chinese male volunteers, and 12 seminal metals (Mn, Cu, Zn, Se, Ni, Cd, Pb, Co, Ag, Ba, Tl, and Fe), the total antioxidant capacity (TAC), and reduced glutathione were measured. Semen parameters and GSTM1/GSTT1-null genotypes were also detected. Bayesian kernel machine regression (BKMR) was applied to evaluate the effect of the mixed exposure to metals on semen parameters. The mediation of TAC and moderation of GSTM1/GSTT1 deletion were analyzed. RESULTS: Most seminal metal concentrations were correlated with each other. The BKMR models revealed a negative association between the semen volume and metal mixture, with Cd (cPIP = 0.60) and Mn (cPIP = 0.10) as the major contributors. Compared to fixing all scaled metals at their median value (50th percentiles), fixing the scaled metals at their 75th percentiles decreased the TAC by 2.17 units (95%CI: -2.60, -1.75). Mediation analysis indicated that Mn decreased the semen volume, with 27.82% of this association mediated by TAC. Both the BKMR and multi-linear models showed that seminal Ni was negatively correlated with sperm concentration, total sperm count, and progressive motility, which was modified by GSTM1/GSTT1. Furthermore, Ni and the total sperm count showed a negative association in GSTT1 and GSTM1 null males (ß[95%CI]: 0.328 [-0.521, -0.136]) but not in males with GSTT1 and/or GSTM1. Although Fe and the sperm concentration and total sperm count were positively correlated, they showed inverse "U" shapes in univariate analysis. CONCLUSION: Exposure to the 12 metals was negatively associated with semen volume, with Cd and Mn as the major contributors. TAC may mediate this process. GSTT1 and GSTM1 can modify the reduction in the total sperm count caused by seminal Ni exposure.
Asunto(s)
Antioxidantes , Glutatión Transferasa , Análisis de Semen , Adulto , Humanos , Masculino , Teorema de Bayes , Cadmio , Pueblos del Este de Asia , Eliminación de Gen , Metales/toxicidad , Semen , Glutatión Transferasa/genética , ManganesoRESUMEN
The widespread applications of silver nanoparticles (AgNPs) throughout our daily lives have raised concerns regarding their environmental health and safety (EHS). Despite an increasing number of studies focused on the EHS impacts of AgNPs, there remain significant knowledge gaps with respect to their potential health impacts on susceptible populations, such as lactating mothers and infants. Herein, we aimed to investigate the deleterious effects of AgNPs with different sizes (20 and 40 nm) and surface coatings (PVP and BPEI) on maternal mice and their offspring following lactation exposure at doses of 20, 100 and 400 µg/kg body weight. We discovered that AgNPs could accumulate in the maternal mammary glands and disrupt the epithelial barrier in a dose-dependent manner. Notably, BPEI-coated AgNPs caused more damage to the mammary glands than PVP-coated particles. Importantly, we observed that, while AgNPs were distributed throughout the blood and main tissues, they were particularly enriched in the brains of breastfed offspring after maternal exposure during lactation, exhibiting exposure dosage- and particle coating-dependent patterns. Compared to PVP-coated nanoparticles, BPEI-coated AgNPs were more readily transferred to the offspring, possibly due to their enhanced deposition in maternal mammary glands. Moreover, we observed reduced body weight, blood cell toxicity, and tissue injuries in breastfed offspring whose dams received AgNPs. As a whole, these results reveal that maternal exposure to AgNPs results in the translocation of AgNPs into offspring via breastfeeding, inducing developmental impairments in these breastfed offspring. This study provides important new insights into the EHS impacts of AgNP consumption during lactation.
Asunto(s)
Lactancia , Nanopartículas del Metal , Femenino , Animales , Ratones , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Peso CorporalRESUMEN
Guar gum has been used in the management of hypercholesterolemia, constipation, weight loss, type 2 diabetes mellitus and hypertension. Our aim was to verify the hypothesis that Guar gum can be used as an alternative to pharmacological agents in the treatment of mild hypertension. Thus, we conducted a systematic review and meta-analysis to evaluate the effectiveness of Guar gum in reducing blood pressure. We searched the Cochrane Library, PubMed/Medline, Scopus and Google Scholar databases for studies published in the English language up to June 2020 which evaluated the effects of gum consumption on systolic blood pressure (SBP) and diastolic blood pressure (DBP). Nine randomized clinical trials with suitable comparison groups (placebo/control) reported SBP and DBP as outcome measures. These trials involved in total 640 participants. The overall results indicated that the consumption of gum resulted in a significant change in SBP (WMD: -1.190 mmHg, 95% CI: -2.011, -0.370) and DBP (WMD: -1.101 mmHg, 95% CI: -1.597, -0.605). Moreover, the greatest reduction in blood pressure was seen in patients with type 2 diabetes mellitus and metabolic syndrome who consumed Guar gum (WMD: -3.375 mmHg). In addition, there was a significant decrease in SBP if the gum dosage was > 15 g (WMD: -6.637 mmHg) and if the intervention duration was > 12 weeks (WMD: -1.668 mmHg). The results of the present dose-response meta-analysis support the employment of gum consumption in the reduction of SBP and DBP. Based on the sub-group analyses, we highlight that the greatest decrease in SBP was experienced if the gum dosage was > 15 g and when the intervention lasted > 12 weeks.
Asunto(s)
Enfermedad Coronaria , Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Presión Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Factores de RiesgoRESUMEN
Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.
Asunto(s)
Lesión Pulmonar , Material Particulado , Humanos , Ratones , Animales , Material Particulado/toxicidad , Lesión Pulmonar/inducido químicamente , Antioxidantes/metabolismo , Pulmón , Estrés Oxidativo , Inflamación/metabolismoRESUMEN
Fine particulate matter (PM2.5), a ubiquitous environmental pollutant, has been indicated to affect thyroid hormone (TH) homeostasis in women, but the detailed mechanism behind this effect remains unclear. The objective of this study was to evaluate the roles of the hypothalamic-pituitary-thyroid (HPT) axis and hepatic transthyretin in the thyroid-disrupting effects of PM2.5. Sprague Dawley rats were treated with PM2.5 (0, 15 and 30 mg/kg) by passive pulmonary inhalation for 49 days; and recovery experimental group rats were dosed with PM2.5 (30 mg/kg) for 35 days, and no treatment was done during the subsequent 14 days. PM2.5 was handled twice a day by passive pulmonary inhalation throughout the study. After treatment, pathological changes were analyzed by performing haemotoxylin and eosin staining, measuring levels of THs and urine iodine (UI) in serum, plasma, and urine samples using enzyme-linked immunoabsorbent assay, and expression of proteins in the hypothalamus, pituitary, thyroid, and liver tissues of rats were analyzed by immunohistochemistry and Western blotting. The levels of oxidative stress factors, such as reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and nuclear factor-kappa B (NF-κB) in female rats' plasma were also evaluated by ELISA. The results of these analyses revealed that PM2.5 treatment induced pathologic changes in rat thyroid and liver characterized by increased follicular cavity size and decreased amounts of follicular epithelial cells and fat vacuoles, respectively. Serum levels of triiodothyronine, thyroxine, and thyroid stimulating hormone were significantly decreased, plasma NF-κB level was increased and plasma redox state was unbalanced (enhanced ROS, MDA and Gpx levels; reduced SOD activities) in female rats treated with PM2.5 (P < 0.05). PM2.5 treatment suppressed the biosynthesis and biotransformation of THs by increasing sodium iodide symporter, thyroid transcription factor 1, thyroid transcription factor 2, and paired box 8 protein expression levels (P < 0.05). Additionally, thyroid stimulating hormone receptor and thyroid peroxidase levels were significantly decreased (P < 0.05). Both thyrotropin releasing hormone receptor and thyroid stimulating hormone beta levels were enhanced (P < 0.05). Moreover, transport of THs was inhibited due to reduced protein expression of hepatic transthyretin upon treatment with PM2.5. In summary, PM2.5 treatment could perturb TH homeostasis by affecting TH biosynthesis, biotransformation, and transport, affecting TH receptor levels, and inducing oxidative stress and inflammatory responses. Activation of the HPT axis and altered hepatic transthyretin levels therefore appear to play a crucial role in PM2.5-induced thyroid dysfunction.
Asunto(s)
Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Material Particulado/toxicidad , Prealbúmina/metabolismo , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Animales , Femenino , Homeostasis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/metabolismo , Glándula Tiroides/metabolismo , Glándula Tiroides/patologíaRESUMEN
To assess the effect of the NFKB1 -94ins/del polymorphism on cancer, we conducted a meta-analysis based on 25 studies including 8,750 cases and 9,170 controls. Overall, the -94ins/del polymorphism was associated with cancer risk in the pooled analysis and in Asian population, whereas no association was observed in Caucasian population. Stratified analysis by subtypes of cancer showed that the -94ins/del polymorphism was associated with oral squamous cell carcinoma and ovarian cancer risk, but had no association with colorectal cancer, bladder cancer, and renal cell cancer. Our meta-analysis suggests the NFKB1 -94ins/del polymorphism affects cancer susceptibility, and the association is ethnic-specific.
Asunto(s)
Predisposición Genética a la Enfermedad , Mutación INDEL/genética , Subunidad p50 de NF-kappa B/genética , Neoplasias/genética , Neoplasias Ováricas/genética , Pueblo Asiatico/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Escamosas/genética , Neoplasias Colorrectales/genética , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Neoplasias Renales/genética , Neoplasias de la Boca/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Riesgo , Neoplasias de la Vejiga Urinaria/genética , Población Blanca/genéticaRESUMEN
Thoracic aortic aneurysms (TAAs) are a major cause of death owing to weaker blood vessel walls and higher rupture rates in affected individuals. Vascular smooth muscle cells (VSMCs) are the predominant cell type within the aortic wall and their dysregulation may contribute to TAA progression. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, is involved in several pathological processes; however, the biological functions and mechanisms underlying VSMC phenotype transition and vascular intimal hyperplasia remain unclear. The present study aimed to determine the involvement of EZH2 in mediating VSMC function in the development of TAAs. The expression of EZH2 was revealed to be elevated in patients with thoracic aortic dissection and TAA mouse model through western blotting and reverse transcription-quantitative PCR experiments. Subsequently, a mouse model was established using ß-aminopropionitrile. In vitro, EdU labeling, Transwell assay, wound healing assay and hematoxylin-eosin staining revealed that knocking down the Ezh2 gene could reduce the proliferation, invasion, migration, and calcification of mouse primary aortic smooth muscle cells. Flow cytometry analysis found that EZH2 deficiency increased cell apoptosis. Depletion of Ezh2 in mouse primary aortic VSMCs promoted the transformation of VSMCs from a synthetic to a contractile phenotype. Using RNA-sequencing analysis, it was demonstrated that Ezh2 regulated a group of genes, including integrin ß3 (Itgb3), which are critically involved in the extracellular matrix signaling pathway. qChIP found Ezh2 occupies the Itgb3 promoter, thereby suppressing the expression of Itgb3. Ezh2 promotes the invasion and calcification of VSMCs, and this promoting effect is partially reversed by co-knocking down Itgb3. In conclusion, the present study identified a previously unrecognized EZH2-ITGB3 regulatory axis and thus provides novel mechanistic insights into the pathophysiological function of EZH2. EZH2 may thus serve as a potential target for the management of TAAs.
RESUMEN
BACKGROUND: The transcription factor GATA4 is pivotal in cancer development but is often silenced through mechanisms like DNA methylation and histone modifications. This silencing suppresses the transcriptional activity of GATA4, disrupting its normal functions and promoting cancer progression. However, the precise molecular mechanisms and implications of GATA4 silencing in tumorigenesis remain unclear. Here, we aim to elucidate the mechanisms underlying GATA4 silencing and explore its role in breast cancer progression and its potential as a therapeutic target. METHODS: The GATA4-breast cancer prognosis link was explored via bioinformatics analyses, with GATA4 expression measured in breast tissues. Functional gain/loss experiments were performed to gauge GATA4's impact on breast cancer cell malignancy. GATA4-PRC2 complex interaction was analyzed using silver staining and mass spectrometry. Chromatin immunoprecipitation, coupled with high-throughput sequencing, was used to identify GATA4-regulated downstream target genes. The in vitro findings were validated in an in situ breast cancer xenograft mouse model. RESULTS: GATA4 mutation and different breast cancer subtypes were correlated, suggesting its involvement in disease progression. GATA4 suppressed cell proliferation, invasion, and migration while inducing apoptosis and senescence in breast cancer cells. The GATA4-PRC2 complex interaction silenced GATA4 expression, which altered the regulation of FAS, a GATA4 downstream gene. In vivo experiments verified that GATA4 inhibits tumor growth, suggesting its regulatory function in tumorigenesis. CONCLUSIONS: This comprehensive study highlights the epigenetic regulation of GATA4 and its impact on breast cancer development, highlighting the PRC2-GATA4-FAS pathway as a potential target for therapeutic interventions in breast cancers.
RESUMEN
Coxsackievirus A2 (CVA2) is associated with multiple diseases in children. Currently, there is limited research on immunological detection methods for CVA2. Herein, the VP1 gene of CVA2 strain 201711, belonging to cluster 2 within genotype D, was analyzed. The structures of VP1 from CVA2 strains 201711, 7-1 and 12-1, enterovirus A71 (EV-A71) strain 201713, coxsackievirus A16 (CVA16) strain 201717, and coxsackievirus A6 (CVA6) strain JLS10 were compared. The Escherichia coli BL21(DE3)/pET vector system was employed to express the recombinant protein containing the entire VP1 of CVA2 strain 201711. Mice were immunized with the purified protein, and the sera were collected and used to specifically identify the VP1 in CVA2-infected RD cells by Western blot and immunofluorescence assay. There was no evident cross-reactivity of the sera with the VP1 of EV-A71, CVA16, and CVA6 strains mentioned above. Therefore, this study provided mouse-specific anti-CVA2 VP1 polyclonal antibodies for CVA2 detection.
RESUMEN
Aortic aneurysm/dissection (AAD) is a serious cardiovascular condition characterized by rapid onset and high mortality rates. Currently, no effective drug treatment options are known for AAD. AAD pathogenesis is associated with the phenotypic transformation and abnormal proliferation of vascular smooth muscle cells (VSMCs). However, endogenous factors that contribute to AAD progression remain unclear. We aimed to investigate the role of histone deacetylase 9 (HDAC9) in AAD pathogenesis. HDAC9 expression was considerably increased in human thoracic aortic dissection specimens. Using RNA-sequencing (RNA-seq) and chromatin immunoprecipitation, we demonstrated that HDAC9 transcriptionally inhibited the expression of superoxide dismutase 2 and insulin-like growth factor-binding protein-3, which are critically involved in various signaling pathways. Furthermore, HDAC9 triggered the transformation of VSMCs from a systolic to synthetic phenotype, increasing their proliferation and migration abilities and suppressing their apoptosis. Consistent with these results, in vivo experiments revealed that TMP195, a pharmacological inhibitor of HDAC9, suppressed the formation of the ß-aminopropionitrile-induced AAD phenotype in mice. Our findings indicate that HDAC9 may be a novel endogenous risk factor that promotes the onset of AAD by mediating the phenotypic transformation of VSMCs. Therefore, HDAC9 may serve as a potential therapeutic target for drug-based AAD treatment. Furthermore, TMP195 holds potential as a therapeutic agent for AAD treatment.
Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Benzamidas , Oxadiazoles , Humanos , Ratones , Animales , Músculo Liso Vascular/patología , Disección Aórtica/tratamiento farmacológico , Disección Aórtica/genética , Histona Desacetilasas/genética , Aneurisma de la Aorta/tratamiento farmacológico , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/patología , Fenotipo , Miocitos del Músculo Liso/patología , Células CultivadasRESUMEN
As a cost-effective photocatalyst, carbon nitride (g-C3N4) holds tremendous promise for addressing energy shortages and environmental pollution. However, its application is limited by disadvantages such as low specific surface area and easy recombination of photogenerated electron-hole pairs. This study introduces C and O co-doped g-C3N4 with a three-dimensional (3D) structure achieved through a straightforward one-step calcination process, demonstrating excellent photocatalytic activity of hydrogen production and oxytetracycline degradation, with superoxide radicals as the primary active species. We propose a plausible enhanced mechanism based on systematic characterizations and density functional theory calculations. The 3D structure confers a substantial specific surface area, enhancing both the adsorption area and active sites of catalysts while bolstering structural stability. Co-doping optimizes the band structure and electric conductivity of the catalyst, facilitating rapid migration of photogenerated charges. The synergistic effects of these enhancements significantly elevate the photocatalytic performance. This study presents a convenient and feasible method for the preparation of dual-regulated photocatalysts with outstanding performance.
RESUMEN
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
RESUMEN
We developed an inductively coupled plasma mass spectrometry method for testing 23 elements, namely, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, W, Tl, Pb, and U, in human serum. The serum samples were analyzed after diluting 1/25 with 0.5% nitric acid, 0.02% Triton-X-100, and 2% methanol. Sc, In, Y, Tb, and Bi were assigned internal standards to correct the baseline drift and matrix interference. The kinetic energy discrimination mode of the instrument with helium gas as the collision gas eliminated polyatomic interference. All 23 elements exhibited excellent linearity in their testing range, with a coefficient of determination ≥ 0.9996. The limits of detection of the 23 elements were within the range of 0.0004-0.2232 µg/L. The intra- and inter-day precision (relative standard deviation) were < 12.19%. The recoveries of the spiked standard for all elements were 88.98-109.86%. Among the 23 elements of the serum reference materials, the measured results of Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Se were within the specified range of the certificate, and the results of the other elements were also satisfactory. The developed method was simple, rapid, and effective, and only 60 µL sample was consumed. A total of 1000 serum samples from healthy individuals were randomly selected from the Henan Rural Cohort, which reflects the status of serum elements in rural adults from the Northern Henan province of central China.
RESUMEN
Fine particulate matter (PM2.5) has drawn more and more interest due to its adverse effects on health. Thyroid has been demonstrated to be the key organ impacted by PM2.5. However, the mechanisms for PM2.5 exposure-induced thyrotoxicity remain unclear. To explore the mechanisms, a rat thyroid injury model was established by exposing rats to PM2.5 via passive pulmonary inhalation. Thyroid hormones and thyroid function proteins were detected. The thyroid function affected by PM2.5 exposure was investigated via metabolomics analysis using liquid chromatography-mass spectrometry and 16S rRNA gene sequencing. Results showed that PM2.5 exposure induced remarkable alterations in gut microbiome evenness, richness, and composition. Metabolomics profiling revealed that the urine metabolites levels were changed by PM2.5 exposure. The altered gut microbiota and urine metabolites showed significant correlations with thyroid function indicators (total T3, total T4 and thyrotropin hormone, etc.). These metabolites were involved in metabolic pathways including thyroid hormone synthesis, metabolisms of tryptophan, d-Glutamine and D-glutamate, histidine, glutathione, etc. The altered gut microbiota showed significant correlations with urine metabolites (glutathione, citric acid, D-Glutamic acid, kynurenic acid and 5-Aminopentanoic acid, etc.). For example, the taurocholic acid levels positively correlated with the relative abundance of several genera including Elusimicrobium (r = 0.9741, p = 0.000000), Muribaculum (r = 0.9886, p = 0.000000), Candidatus_Obscuribacter (r = 0.8423, p = 0.000585), Eubacterium (r = 0.9237, p = 0.000017), and Parabacteroides (r = 0.8813, p = 0.000150), while it negatively correlated with the relative abundance of Prevotella (r = -0.8070, p = 0.001509). PM2.5 exposure-induced thyrotoxicity led to remarkable alterations both in gut microbiome composition and some metabolites involved in metabolic pathways. The altered intestinal flora and metabolites can in turn influence thyroid function in rats. These findings may provide novel insights regarding perturbations of the gut-thyroid axis as a new mechanism for PM2.5 exposure-induced thyrotoxicity.
Asunto(s)
Microbioma Gastrointestinal , Animales , Glutatión/metabolismo , Metaboloma , Material Particulado/toxicidad , ARN Ribosómico 16S/genética , Ratas , Glándula Tiroides/metabolismoRESUMEN
Toxic cyanobacterial blooms in freshwater have been considered as threats to human health. Microcystins are a family of cyclic polypeptides produced by cyanobacteria and are toxic to plants and animals. Microcystin-LR (MC-LR) is the most toxic variant among the microcystin family and could cause oxidative stress in various organs, including the reproduction system. The aim of this study was to investigate the effect of MC-LR on apoptosis of Sertoli cells that play an essential role in the development and maturation of sperm cells. Sertoli cells were isolated from healthy immature rats and cultured with MC-LR. The viability of Sertoli cells was decreased after treatment with MC-LR at 10 µg/ml for 24 h (P < 0.05). Moreover, the MC-LR-treated cells exhibited condensed chromatin and fragmented nuclei, features of apoptosis, as judged by Hoechst 33258 staining. We also analyzed the mRNA and protein levels of three apoptosis-related genes, p53, bax and bcl-2, using reverse transcription-polymerase chain reaction and Western blot analyses, respectively. Both p53 and bax function as promoters of apoptosis, while bcl-2 is an apoptotic suppressor. The mRNA and protein expression levels of p53 and bax were increased in Sertoli cells treated with MC-LR at 10 µg/ml compared with the control group (P < 0.05), while the bcl-2 protein levels were decreased in cells treated with MC-LR at 10 µg/ml (P < 0.05). Moreover, caspase-3 activity that is involved in the induction of apoptosis was significantly increased in Sertoli cells treated with MC-LR. These results indicate that MC-LR induces apoptosis of Sertoli cells.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Microcistinas/toxicidad , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Western Blotting , Caspasa 3/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Toxinas Marinas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Sertoli/enzimología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
OBJECTIVE: To determine the effect of mitochondrial DNA copy number (mtDNAcn) as a biomarker of benzene exposure. METHODS: A total of 294 benzene-exposed workers and 102 controls were recruited. Biomarkers of mtDNAcn, cytokinesis-block micronucleus (MN) frequency, and peripheral blood white blood cells (WBC) were detected. Eighteen polymorphism sites in DNA damage repair and metabolic genes were analyzed. RESULTS: Benzene exposure increased mtDNAcn and indicated a dose-response relationship (Pâ<â0.001). mtDNAcn was negatively correlated with WBC count and DNA methylation and positively correlated with MN frequency. The AG type in rs1695 interacted with benzene exposure to aggravate mtDNAcn (ßâ=â0.006, 95% CI: 0, 0.012, Pâ=â0.050). rs13181, rs1695, rs1800975, and GSTM1 null were associated with benzene-induced mtDNAcn. Rs1695 interacted with benzene to increase mitochondrial damage. CONCLUSIONS: Benzene exposure increases mtDNAcn levels in benzene-exposed workers.
Asunto(s)
Benceno , Exposición Profesional , Benceno/análisis , Benceno/toxicidad , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Interacción Gen-Ambiente , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisisRESUMEN
OBJECTIVE: To evaluate the association between metabolic syndrome and coronary artery calcification according to different sex and menopausal status. METHODS: This cross-sectional study included 2,704 adults from the Jidong community (Tangshan, China) recruited from July 2013 to August 2014. Adults aged ≥40âyears with no cardiovascular disease and with coronary artery calcification score data were included. Metabolic syndrome was defined according to the 2005 International Diabetes Federation standard. Coronary artery calcification score was determined using the Agatston method. The associations between metabolic syndrome and coronary artery calcification prevalence were evaluated using logistic regression. RESULTS: In the multivariable regression analysis, metabolic syndrome was associated with coronary artery calcification (odds ratio: 1.34, 95% confidence interval: 1.04-1.71, Pâ=â0.021). When stratified by sex, metabolic syndrome was positively associated with coronary artery calcification prevalence in female participants (odds ratio: 2.79, 95% confidence interval: 1.96-3.96, Pâ<â0.001), whereas no association was observed in male participants. Furthermore, metabolic syndrome was associated with a higher prevalence of coronary artery calcification (Pâ<â0.001) independent of adjustment for covariates in postmenopausal women than in premenopausal women, and coronary artery calcification prevalence increased with an increase in conditions related to metabolic syndrome. CONCLUSIONS: Our findings indicate that metabolic syndrome in postmenopausal women is associated with a higher prevalence of coronary artery disease than in premenopausal women and men.
Asunto(s)
Enfermedad de la Arteria Coronaria , Síndrome Metabólico , Calcificación Vascular , Adulto , China/epidemiología , Enfermedad de la Arteria Coronaria/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Síndrome Metabólico/epidemiología , Prevalencia , Factores de Riesgo , Calcificación Vascular/epidemiologíaRESUMEN
Elimination of antibiotics such as tetracycline hydrochloride (TC) from wastewater is of great significance, but still faces challenges. Herein, for the first time, I and P co-doped TiO2 catalysts were prepared via a hydrolysis method. We also reported a simple method to prepare I and P co-doped TiO2 photoelectrodes, which exhibited preeminent photoelectrocatalytic (PEC) performance for the decomposition of TC. The synergistic effect of I and P co-doping could significantly improve the charge separation rate and enhance the light absorption capacity of TiO2, leading to an enhancement of PEC activity. The main factors affecting the PEC performance were investigated, and the highest degradation rate constant (4.20 × 10-2 min-1) was achieved when the doping content of P was 4 at% (ITP-4 photoelectrode) at pH 11.02 under visible light. The Langmuir-Hinshelwood kinetic model and active species trapping experiments were selected to investigate the degradation mechanism of TC. The results suggest that the hydroxyl radicals and photogenerated holes were the main active species that were responsible for the decomposition of TC. Moreover, the degradation pathways of TC based on the intermediates also demonstrated that the hydroxyl radicals and holes showed a principal role in degrading TC.
RESUMEN
PURPOSE: This study aimed to clarify the resting-state cerebral blood flow alteration patterns induced by primary dysmenorrhea, investigate the relationships between cerebral blood flow alterations and clinical parameters of patients with primary dysmenorrhea, and explore whether brain regions with abnormal cerebral blood flow also feature functional connectivity changes. METHODS: Arterial spin labeling imaging and clinical parameters were acquired in 42 patients with primary dysmenorrhea and 41 healthy controls during their menstrual phases. Differences in cerebral blood flow were compared between the two groups, and the clusters with significant group differences were selected as the regions of interest for further statistical analyses. RESULTS: Compared to healthy controls, patients with primary dysmenorrhea exhibited increased cerebral blood flow in the bilateral precuneus, left posterior cingulate cortex, and right rolandic operculum. Among patients with primary dysmenorrhea, we identified a negative correlation between the cerebral blood flow in the right rolandic operculum and the visual analogue score for anxiety, and greater correlation between the functional connectivity in the precuneus/posterior cingulate cortex and the right middle cingulate cortex, and between the right rolandic operculum and the left inferior parietal lobule and the bilateral postcentral gyrus. DISCUSSION: Cerebral blood flow abnormalities associated with primary dysmenorrhea were mainly concentrated in the areas comprising the default mode network in primary dysmenorrhea patients, which could be involved in the central mechanism of primary dysmenorrhea. Cerebral blood flow alteration in the rolandic operculum may underlie an anxiety-induced compulsive tendency in patients with primary dysmenorrhea. Investigating the enhanced connectivity among various pain-related brain regions could improve understanding of the onset and development of primary dysmenorrhea.