Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Endocr Res ; 49(1): 46-58, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37950485

RESUMEN

Diabetes mellitus is a multifactorial metabolic disease, of which type 2 diabetes (T2D) is one of the most common. The complications of diabetes are far more harmful than diabetes itself. Type 2 diabetes complications include diabetic nephropathy (DN), diabetic heart disease, diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) et al. Many animal models have been developed to study the pathogenesis of T2D and discover an effective strategy to treat its consequences. In this sense, it is crucial to choose the right animal model for the corresponding diabetic complication. This paper summarizes and classifies the animal modeling approaches to T2D complications and provides a comprehensive review of their advantages and disadvantages. It is hopeful that this paper will provide theoretical support for animal trials of diabetic complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Nefropatías Diabéticas , Neuropatías Diabéticas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Pie Diabético/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Modelos Animales , Factores de Riesgo
2.
Small ; 19(14): e2205720, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36634983

RESUMEN

Nanoporous single-crystal silicon carbide (SiC) is widely used in various applications such as protein dialysis, as a catalyst support, and in photoanodes for photoelectrochemical water splitting. However, the fabrication of nano-structured SiC is challenging owing to its extreme chemical and mechanical stability. This study demonstrates a highly-efficient, open-circuit electrolytic plasma-assisted chemical etching (EPACE) method without aggressive fluorine-containing reactants. The EPACE method enables the nano-structuring of SiC via a plasma-enveloped microtool traversing over the target material in an electrolyte bath. Through process design, EPACE readily produces a uniform nanoporous layer on a 4H-SiC wafer in KOH aqueous solution, with adjustable pore diameters in the range 40-130 nm. Plasma diagnosis by optical emission spectrometry (OES) and surface microanalysis reveal that EPACE realizes a nanoporous structure by electrolytic plasma-assisted oxidation and subsequent thermochemical reduction of an oxide. An increase in voltage or a decrease in etch gap intensifies the plasma and improves the etching efficiency. The maximum etch rate and depth reach 540 nm min-1 and 10 µm, respectively, demonstrating the significant potential of the approach as a time-saving and sustainable nanofabrication method for industrial applications. Further, the effectiveness of the fabricated SiC nanoporous structure for application in photoelectrochemical water splitting is demonstrated.

3.
Crit Rev Food Sci Nutr ; 63(16): 2773-2789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34554029

RESUMEN

As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.


Asunto(s)
Flavonoides , Quempferoles , Quempferoles/farmacología , Quempferoles/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Polifenoles , Antioxidantes/farmacología , Suplementos Dietéticos
4.
J Nanobiotechnology ; 21(1): 70, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855156

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) disruption is a major adverse event after ischemic stroke (IS). Caveolin-1 (Cav-1), a scaffolding protein, played multiple roles in BBB permeability after IS, while the pros and cons of Cav-1 on BBB permeability remain controversial. Numerous studies revealed that extracellular vesicles (EVs), especially stem cells derived EVs, exerted therapeutic efficacy on IS; however, the mechanisms of BBB permeability needed to be clearly illustrated. Herein, we compared the protective efficacy on BBB integrity between bone marrow mesenchymal stem cells derived extracellular vesicles (BMSC-EVs) and EVs from brain endothelial cells (BEC-EVs) after acute IS and investigated whether the mechanism was associated with EVs antagonizing Cav-1-dependent tight junction proteins endocytosis. METHODS: BMSC-EVs and BEC-EVs were isolated and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscope. Oxygen and glucose deprivation (OGD) treated b. End3 cells were utilized to evaluate brain endothelial cell leakage. CCK-8 and TRITC-dextran leakage assays were used to measure cell viability and transwell monolayer permeability. Permanent middle cerebral artery occlusion (pMCAo) model was established, and EVs were intravenously administered in rats. Animal neurological function tests were applied, and microvessels were isolated from the ischemic cortex. BBB leakage and tight junction proteins were analyzed by Evans Blue (EB) staining and western blotting, respectively. Co-IP assay and Cav-1 siRNA/pcDNA 3.1 vector transfection were employed to verify the endocytosis efficacy of Cav-1 on tight junction proteins. RESULTS: Both kinds of EVs exerted similar efficacies in reducing the cerebral infarction volume and BBB leakage and enhancing the expressions of ZO-1 and Claudin-5 after 24 h pMCAo in rats. At the same time, BMSC-EVs were outstanding in ameliorating neurological function. Simultaneously, both EVs treatments suppressed the highly expressed Cav-1 in OGD-exposed b. End3 cells and ischemic cerebral microvessels, and this efficacy was more prominent after BMSC-EVs administration. Cav-1 knockdown reduced OGD-treated b. End3 cells monolayer permeability and recovered ZO-1 and Claudin-5 expressions, whereas Cav-1 overexpression aggravated permeability and enhanced the colocalization of Cav-1 with ZO-1 and Claudin-5. Furthermore, Cav-1 overexpression partly reversed the lower cell leakage by BMSC-EVs and BEC-EVs administrations in OGD-treated b. End3 cells. CONCLUSIONS: Our results demonstrated that Cav-1 aggravated BBB permeability in acute ischemic stroke, and BMSC-EVs exerted similar antagonistic efficacy to BEC-EVs on Cav-1-dependent ZO-1 and Claudin-5 endocytosis. BMSC-EVs treatment was superior in Cav-1 suppression and neurological function amelioration.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Células Madre Mesenquimatosas , Animales , Ratas , Barrera Hematoencefálica , Células Endoteliales , Claudina-5 , Caveolina 1 , Encéfalo , Endocitosis
5.
Ecotoxicol Environ Saf ; 263: 115379, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597290

RESUMEN

As a key component in non-enzyme resistance system, flavonoids play a crucial role in the plant growth and defenses, which are significantly affected by biotic and abiotic factors such as fungi, bacteria, viruses, heavy metals, and atmospheric CO2. Arbuscular mycorrhizal fungi (AMF) play an important role in enhancing plant tolerance to adverse environments, which can significantly affect the synthesis of flavonoids by forming mycorrhizal symbionts with plant roots. However, few studies explored the combined effects of AMF, elevated CO2, and heavy metals on flavonoids in plants. Here, we investigated the adaptive response of flavonoids accumulation in Robinia pseudoacacia L. seedlings affected by the contamination of cadmium (Cd) and elevated CO2 to arbuscular mycorrhizal symbiosis. The results showed that G. mosseae decreased (p < 0.05) Cd content in leaves by 62.2% under elevated CO2. Moreover, G. mosseae colonization led to significant decreases in robinin, quercetin, kaempferol and acacetin by 17.4%, 11.1%, 15.5% and 23.1% under elevated CO2 + Cd, respectively. Additionally, G. mosseae down-regulated (p < 0.05) expression levels of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes under elevated CO2 + Cd, and CHS and uridine diphosphate flavonoid glucosyltransferase (UFGT) activities decreased (p < 0.05). Quercetin, kaempferol and acacetin showed positive (p < 0.05) correlation with PAL and CHS genes expression and PAL, CHS, and UFGT activities. Cadmium, C/N ratio, carotenoids, leaf biomass, total chlorophyll, P, and starch in leaves and G. mosseae colonization rate in roots influenced (p < 0.05) flavonoids content. Overall, G. mosseae reduced flavonoids synthesis by down-regulating gene expression levels and activities of key enzymes under elevated CO2 + Cd. The results improved our understanding of the regulation of AMF on non-enzymatic resistance of plants grown in heavy metal-contaminated soils under increasing atmospheric CO2 scenarios.


Asunto(s)
Micorrizas , Robinia , Cadmio/toxicidad , Quercetina , Dióxido de Carbono , Quempferoles , Simbiosis , Flavonoides
6.
Phytother Res ; 37(10): 4690-4705, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37424151

RESUMEN

Ulcerative colitis (UC) has emerged as a global healthcare issue due to high prevalence and unsatisfying therapeutic measures. 20(S)- Protopanaxadiol saponins (PDS) from Panax notoginseng with anti-inflammatory properties is a potential anti-colitis agent. Herein, we explored the effects and mechanisms of PDS administration on experimental murine UC. Dextran sulfate sodium-induced murine UC model was employed to investigate anti-colitis effects of PDS, and associated mechanisms were further verified in HMGB1-exposed THP-1 macrophages. Results indicated that PDS administration exerted ameliorative effects against experimental UC. Moreover, PDS administration remarkably downregulated mRNA expressions and productions of related pro-inflammatory mediators, and reversed elevated expressions of proteins related to NLRP3 inflammasome after colitis induction. Furthermore, administration with PDS also suppressed the expression and translocation of HMGB1, interrupting the downstream TLR4/NF-κB pathway. In vitro, ginsenoside CK and 20(S)-protopanaxadiol, the metabolites of PDS, exhibited greater potential in anti-inflammation, and intervened with the TLR4-binding domain of HMGB1 predictably. Expectedly, ginsenoside CK and 20(S)-protopanaxadiol administrations inhibited the activation of TLR4/NF-κB/NLRP3 inflammasome pathway in HMGB1-exposed THP-1 macrophages. Summarily, PDS administration attenuated inflammatory injury in experimental colitis by blocking the binding of HMGB1 to TLR4, majorly attributed to the antagonistic efficacies of ginsenoside CK and 20(S)-protopanaxadiol.


Asunto(s)
Colitis Ulcerosa , Colitis , Proteína HMGB1 , Panax notoginseng , Saponinas , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Saponinas/farmacología , Panax notoginseng/química , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Colitis/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sulfato de Dextran/efectos adversos
7.
Phytother Res ; 37(10): 4771-4790, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37434441

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with clinical hallmarks of progressive cognitive impairment and memory loss. Gynostemma pentaphyllum ameliorates cognitive impairment, but the mechanisms remain obscure. Here, we determine the effect of triterpene saponin NPLC0393 from G. pentaphyllum on AD-like pathology in 3×Tg-AD mice and elucidate the underlying mechanisms. NPLC0393 was administered daily in vivo by intraperitoneal injection for 3 months and its amelioration on the cognitive impairment in 3×Tg-AD mice was assessed by new object recognition (NOR), Y-maze, Morris water maze (MWM), and elevated plus-maze (EPM) tests. The mechanisms were investigated by RT-PCR, western blot, and immunohistochemistry techniques, while verified by the 3×Tg-AD mice with protein phosphatase magnesium-dependent 1A (PPM1A) knockdown (KD) through brain-specific injection of adeno-associated virus (AAV)-ePHP-KD-PPM1A. NPLC0393 ameliorated AD-like pathology targeting PPM1A. It repressed microglial NLRP3 inflammasome activation by reducing NLRP3 transcription during priming and promoting PPM1A binding to NLRP3 to disrupt NLRP3 assembly with apoptosis-associated speck-like protein containing a CARD and pro-caspase-1. Moreover, NPLC0393 suppressed tauopathy by inhibiting tau hyperphosphorylation through PPM1A/NLRP3/tau axis and promoting microglial phagocytosis of tau oligomers through PPM1A/nuclear factor-κB/CX3CR1 pathway. PPM1A mediates microglia/neurons crosstalk in AD pathology, whose activation by NPLC0393 represents a promising therapeutic strategy for AD.

8.
J Environ Manage ; 346: 119037, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742565

RESUMEN

Earthworms are considered to be excellent bioindicators of soil pollution. In recent years, there has been increasing interest in examining the effects of soil pollution on earthworm-associated microbiomes, with a particular focus on the gut microbiomes. However, relatively little effort has been invested in comprehensively investigating other microbiomes associated with earthworms and their responses to soil pollution. To fill this gap, we systematically studied the effects of Cd, pyrene, and combined pollution on the bacterial community in different vermicompartments, i.e., burrow wall, gut, and cast, in both epigeic Eisenia fetida and anecic Metaphire guillelmi, using a 2D-terraria incubator and high-throughput sequencing techniques. The results showed that bacterial alpha diversity followed the order of burrow wall > cast > gut, and this did not vary with soil pollution or earthworm ecotypes. Moreover, the dominant phyla in the vermicompartments were similar across different pollution treatments. Principal coordinate analysis (PCoA) revealed that the bacterial communities in different vermicompartments and ecotypes of earthworm were separated from each other, whereas they were grouped together in polluted treatments and unpolluted conditions. These results imply that even in polluted soil, vermicompartment and earthworm ecotypes remain the most significant factors affecting earthworm-associated microbiomes. However, the impacts of soil pollution on the bacterial composition in each vermicompartment were still evident. A comprehensive analysis revealed that the gut bacterial communities are more sensitive to soil contamination than casts and burrow wall in different ecotypes. Additionally, linear discriminant analysis of effect size (LefSe) identified several bacteria in Gemmatimonadota, the Firmicutes phylum in the burrow walls, and Patescibacteria (phyla) in the gut as potential biomarkers for pyrene contamination in soil. This research provides a comprehensive understanding of the effects of soil pollution on earthworm-associated microbiomes, thereby enhancing our understanding of earthworm ecotoxicology and soil pollution management.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Oligoquetos/microbiología , Oligoquetos/fisiología , Cadmio/toxicidad , Bacterias/genética , Contaminación Ambiental , Suelo , Contaminantes del Suelo/análisis , Pirenos/farmacología
9.
Ecotoxicol Environ Saf ; 248: 114342, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442403

RESUMEN

Cadmium (Cd) migration in the rhizosphere soil is easily affected by plants and microorganisms. Global warming significantly affects plant growth, and arbuscular mycorrhizal fungi (AMF) can chelate heavy metals by mycelium, cell wall components, and mycelial secretion. Here, we investigated the regulation of Glomus mosseae on Cd migration in the rhizosphere soil of alfalfa under elevated temperature (ET, + 3 °C). Elevated temperature significantly decreased G. mosseae colonization rate in the roots by 49.5% under Cd exposure. Under ET + G. mosseae + Cd relative to ET + Cd, the contents of free amino acids, total and easily extractable glomalin-related soil protein (GRSP), and root Cd increased significantly; however, the changes in DTPA-Cd in the rhizosphere soil and Cd in the shoots were insignificant. In addition, G. mosseae colonization enhanced the bioconcentration factor of Cd in the roots and the total removal rate of Cd in the rhizosphere soil by 63.4% and 16.3%, respectively, under ET + Cd. However, the changes in the expression of iron-regulated transport 1 (IRT1) and natural resistance-associated macrophage protein 1 genes were insignificant under ET + G. mosseae + Cd relative to ET + Cd. In summary, temperature and G. mosseae significantly affected Cd fate in the rhizosphere soil, and IRT1 gene and rhizosphere soil pH, N, and C/N ratio were significant factors influencing Cd migration. Additionally, G. mosseae improved the remediation efficiency of Cd-contaminated soils by alfalfa under ET. The results will help us understand the regulation of AMF on the phytoremediation of heavy metal-contaminated soils under global warming scenarios.


Asunto(s)
Micorrizas , Rizosfera , Medicago sativa , Cadmio , Suelo , Temperatura
10.
Phytother Res ; 36(5): 2223-2235, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35419891

RESUMEN

Due to sudden loss of cerebral blood circulation, acute ischemic stroke (IS) causes neuronal energy attenuation or even exhaustion by mitochondrial dysfunction resulting in aggravation of neurological injury. In this study, we investigated if Notoginsenoside R1 ameliorated cerebral energy metabolism by limiting neuronal mitochondrial dysfunction in acute IS. Male Sprague-Dawley rats (260-280 g) were selected and performed by permanent middle cerebral artery occlusion model. In vitro, the oxygen glucose deprivation (OGD) model of Neuro2a (N2a) cells was established. We found Notoginsenoside R1 treatment reduced rats' cerebral infarct volume and neurological deficits, with increased Adenosine triphosphate (ATP) level together with upregulated expression of glucose transporter 1/3, monocarboxylate transporter 1 and citrate synthase in brain peri-ischemic tissue. In vitro, OGD-induced N2a cell death was inhibited, cell mitochondrial morphology was improved. Mitochondrial amount, mitochondrial membrane potential, and mitochondrial DNA copy number were increased by Notoginsenoside R1 administration. Furthermore, mitochondrial energy metabolism-related mRNA array found Atp12a and Atp6v1g3 gene expression were upregulated more than twofold, which were also verified in rat ischemic tissue by quantitative polymerase chain reaction (qPCR) assay. Therefore, Notoginsenoside R1 administration increases cerebral glucose and lactate transportation and ATP levels, ameliorates neuronal mitochondrial function after IS. Notoginsenoside R1 may be a novel protective agent for neuronal mitochondria poststroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Adenosina Trifosfato/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Ginsenósidos , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Mitocondrias , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
11.
FASEB J ; 34(9): 11913-11924, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683743

RESUMEN

We recently found that adolescent cocaine exposure (ACE) resulted in an enhancement of the γ-aminobutyric acid (GABA) neurotransmitter system in the prelimbic cortex (PrL) of adult mice. Here, we aim to further investigate the role of GABAergic transmission, especially parvalbumin (PV) interneurons within PrL in the development of ACE-induced anxiety-like behavior, and to assess whether and how electro-acupuncture (EA) therapeutically manage the ACE-induced abnormal behaviors in adulthood. ACE mice exhibited the enhanced anxiety-like behaviors in their adulthood, accompanied by increased GABAergic transmission and PV interneurons in PrL. Chemogenetic blocking PV interneurons in PrL alleviated ACE-enhanced anxiety-like behaviors in mice. Importantly, 37-day EA treatments (mixture of 2 Hz/100 Hz, 1 mA, 30 minutes once a day) at the acupoints of Yintang (GV29) and Baihui (GV20) also alleviated ACE-induced anxiety-like behaviors, and rescued ACE-impaired GABAergic neurotransmitter system and PV interneurons in PrL. In parallel, EA treatments further suppressed the activities of pyramidal neurons in PrL, suggesting that EA treatments seem to perform it beneficial effects on the ACE-induced abnormal emotional behaviors by "calming down" the whole PrL. Collectively, these findings revealed that hyper-function of GABAergic transmission, especially mediating by PV interneurons in PrL may be key etiology underlying ACE-induced anxiety-like behaviors. At least by normalizing the function of GABAergic and PV interneurons, EA may represent a promising therapeutic strategy for managing adolescent substance use-related emotional disorders.


Asunto(s)
Ansiedad , Conducta Animal , Trastornos Relacionados con Cocaína , Electroacupuntura , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/terapia , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/terapia , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatología , Masculino , Ratones , Ratones Transgénicos
12.
FASEB J ; 34(1): 95-106, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914697

RESUMEN

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients, but its pathogenesis is unclear. We aimed to study the role of the pro-ANP convertase Corin in the pathogenesis of DN. Corin and ANP expression in DN rat kidneys and high-glucose-treated HK-2 cells was analyzed by real-time PCR, western blotting, and immunohistochemical staining. The effect of Corin-siRNA or ANP-siRNA HK-2 cells on EA.hy926 cell migration was determined by scratch-wound healing assay. The expression of mitogen-activated protein kinase (MAPK) and endothelial NO synthase (eNOS) in EA.hy926 cells treated with conditioned medium from Corin-siRNA- or ANP-siRNA-transfected HK-2 cells was determined by western blotting. We found a significant reduction in Corin and ANP expression in DN rat kidneys. These results were recapitulated in HK-2 cells treated with high glucose. EA.hy926 cells treated with conditioned medium from Corin-deficient HK-2 cells had inhibited migration, increased MAPK activity, and decreased eNOS activity. Similar effects were observed with ANP-siRNA transfection. Finally, adding ANP to the Corin-deficient HK-2 conditioned medium rescued the above defects, indicating that Corin mediates its effects through ANP. In conclusion, Corin plays a renoprotective role through pro-ANP processing, and defects in Corin cause endothelial dysfunction through MAPK and eNOS signaling in DN.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Endotelio/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Diabetes Mellitus Experimental , Endotelio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/toxicidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Túbulos Renales Proximales/citología , Masculino , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Óxido Nítrico Sintasa de Tipo III/genética , Interferencia de ARN , ARN Interferente Pequeño , Ratas Sprague-Dawley , Serina Endopeptidasas/genética , Serina Endopeptidasas/orina
13.
Ecotoxicol Environ Saf ; 210: 111878, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418159

RESUMEN

Flavonoids participate in several plant processes such as growth and physiological protection in adverse environments. In this study, we investigated the combined effects of eCO2 and cadmium (Cd)-contaminated soils on the total flavonoid and monomer contents in the leaves of Robinia pseudoacacia L. seedlings. Elevated CO2, Cd, and eCO2+ Cd increased the total flavonoids in the leaves relative to the control, and eCO2 mostly increased (p < 0.05) the total flavonoid content under Cd exposure. Elevated CO2 increased (p < 0.05) robinin, rutin, and acacetin contents in the leaves of 45-day seedlings and decreased (p < 0.05) the content of robinin and acacetin at 90 and 135 d under Cd exposure except for robinin at day 45 under Cd1 and acacetin on day 135 under Cd1. Quercetin content decreased (p < 0.05) under the combined conditions relative to Cd alone. Kaempferol in the leaves was only detected under eCO2 on day 135. The responses of total chlorophyll, total soluble sugars, starch, C, N, S, and the C/N ratio in the leaves to eCO2 significantly affected the synthesis of total flavonoids and monomers under Cd exposure. Overall, rutin was more sensitive to eCO2+ Cd than the other flavonoids. Cadmium, CO2, and time had significant interactive effects on the synthesis of flavonoids in the leaves of R. pseudoacacia L. seedlings. Elevated CO2 may improve the protection and defense system of seedlings grown in Cd-contaminated soils by promoting the synthesis of total flavonoids, although robinin, rutin, quercetin, and acacetin yields may reduce with time. Additionally, increased Cd in the leaves suggested that eCO2 could improve the phytoremediation of Cd-contaminated soils.


Asunto(s)
Cadmio/toxicidad , Dióxido de Carbono , Flavonoides/metabolismo , Hojas de la Planta/efectos de los fármacos , Robinia/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Robinia/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
14.
Angew Chem Int Ed Engl ; 59(33): 13836-13843, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32367646

RESUMEN

The development of novel photosensitizing agents with aggregation-induced emission (AIE) properties has fueled significant advances in the field of photodynamic therapy (PDT). An electroporation method was used to prepare tumor-exocytosed exosome/AIE luminogen (AIEgen) hybrid nanovesicles (DES) that could facilitate efficient tumor penetration. Dexamethasone was then used to normalize vascular function within the tumor microenvironment (TME) to reduce local hypoxia, thereby significantly enhancing the PDT efficacy of DES nanovesicles, and allowing them to effectively inhibit tumor growth. The hybridization of AIEgen and biological tumor-exocytosed exosomes was achieved for the first time, and combined with PDT approaches by normalizing the intratumoral vasculature as a means of reducing local tissue hypoxia. This work highlights a new approach to the design of AIEgen-based PDT systems and underscores the potential clinical value of AIEgens.


Asunto(s)
Exocitosis , Exosomas/metabolismo , Nanoestructuras , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Cell Mol Med ; 23(1): 126-142, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30421523

RESUMEN

The remodelling of structural and functional neurovascular unit (NVU) becomes a central therapeutic strategy after cerebral ischaemic stroke. In the present study, we investigated the effect of combined therapy of sodium ferulate (SF), n-butylidenephthalide (BP) and adipose-derived stromal cells (ADSCs) to ameliorate the injured NVU in the photochemically induced thrombotic stroke in rats. After solely or combined treatment, the neovascularization, activation of astrocytes, neurogenesis, expressions of vascular endothelial growth factor (VEGF) and claudin-5 were assessed by immunohistochemical or immunofluorescence staining. In order to uncover the underlying mechanism of therapeutic effect, signalling of protein kinase B/mammalian target of rapamycin (AKT/mTOR), extracellular signal-regulated kinase 1/2 (ERK1/2), and Notch1 in infarct zone were analysed by western blot. 18 F-2-deoxy-glucose/positron emission tomography, magnetic resonance imaging, Evans blue staining were employed to evaluate the glucose metabolism, cerebral blood flow (CBF), and brain-blood barrier (BBB) permeability, respectively. The results showed that combined treatment increased the neovascularization, neurogenesis, and VEGF secretion, modulated the astrocyte activation, enhanced the regional CBF, and glucose metabolism, as well as reduced BBB permeability and promoted claudin-5 expression, indicating the restoration of structure and function of NVU. The activation of ERK1/2 and Notch1 pathways and inhibition of AKT/mTOR pathway might be involved in the therapeutic mechanism. In summary, we have demonstrated that combined ADSCs with SF and BP, targeting the NVU remodelling, is a potential treatment for ischaemic stroke. These results may provide valuable information for developing future combined cellular and pharmacological therapeutic strategy for ischaemic stroke.


Asunto(s)
Ácidos Cumáricos/farmacología , Neurogénesis/efectos de los fármacos , Anhídridos Ftálicos/farmacología , Accidente Cerebrovascular/prevención & control , Células del Estroma/metabolismo , Tejido Adiposo/citología , Animales , Antiinflamatorios no Esteroideos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Edema Encefálico/complicaciones , Células Cultivadas , Circulación Cerebrovascular/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Células del Estroma/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Acta Pharmacol Sin ; 40(9): 1193-1204, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30833709

RESUMEN

Gluconeogenesis is a major source of hyperglycemia in patients with type 2 diabetes mellitus (T2DM), thus targeting gluconeogenesis to suppress glucose production is a promising strategy for anti-T2DM drug discovery. In our preliminary in vitro studies, we found that a small-molecule (E)-3-(2-(quinoline-4-yl)vinyl)-1H-indol-6-ol (QVO) inhibited the hepatic glucose production (HGP) in primary hepatocytes. We further revealed that QVO suppressed hepatic gluconeogenesis involving calmodulin-dependent protein kinase kinase ß- and liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathways as well as AMPK-independent mitochondrial function-related signaling pathway. To evaluate QVO's anti-T2DM activity in vivo, which was impeded by the complicated synthesis route of QVO with a low yield, we designed and synthesized 4-[2-(1H-indol-3-yl)vinyl]quinoline (IVQ) as a prodrug with easier synthesis route and higher yield. IVQ did not inhibit the HGP in primary hepatocytes in vitro. Pharmacokinetic studies demonstrated that IVQ was quickly converted to QVO in mice and rats following administration. In both db/db and ob/ob mice, oral administration of IVQ hydrochloride (IVQ-HCl) (23 and 46 mg/kg every day, for 5 weeks) ameliorated hyperglycemia, and suppressed hepatic gluconeogenesis and activated AMPK signaling pathway in the liver tissues. Furthermore, IVQ caused neither cardiovascular system dysfunction nor genotoxicity. The good druggability of IVQ has highlighted its potential in the treatment of T2DM and the prodrug design for anti-T2DM drug development.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Indoles/uso terapéutico , Profármacos/uso terapéutico , Quinolinas/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Activadores de Enzimas/uso terapéutico , Activadores de Enzimas/toxicidad , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/toxicidad , Glucosa-6-Fosfatasa/antagonistas & inhibidores , Hepatocitos/efectos de los fármacos , Hipoglucemiantes/toxicidad , Indoles/toxicidad , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (GTP)/antagonistas & inhibidores , Profármacos/toxicidad , Quinolinas/toxicidad , Transducción de Señal/efectos de los fármacos
17.
Acta Pharmacol Sin ; 40(10): 1279-1291, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31000769

RESUMEN

The pathogenesis of Alzheimer's disease (AD) is characterized by both accumulation of ß-amyloid (Aß) plaque and formation of neurofibrillary tangles in the brain. Recent evidence shows that autophagy activation may potently promote intracellular Aß clearance. Thus targeting autophagy becomes a promising strategy for discovery of drug leads against AD. In the present study, we established a platform to discover autophagy stimulator and screened the lab in-house FDA-approved drug library. We found that anti-parasitic drug nitazoxanide (NTZ) was an autophagy activator and could efficiently improve learning and memory impairments in APP/PS1 transgenic mice. In BV2 cells and primary cortical astrocytes, NTZ stimulated autophagy and promoted Aß clearance by inhibiting both PI3K/AKT/mTOR/ULK1 and NQO1/mTOR/ULK1 signaling pathways; NTZ treatment attenuated LPS-induced inflammation by inhibiting PI3K/AKT/IκB/NFκB signaling. In SH-SY5Y cells and primary cortical neurons, NTZ treatment restrained tau hyperphosphorylation through inhibition of PI3K/AKT/GSK3ß pathway. The beneficial effects and related signaling mechanisms from the in vitro studies were also observed in APP/PS1 transgenic mice following administration of NTZ (90 mg·kg-1·d-1, ig) for 100 days. Furthermore, NTZ administration decreased Aß level and senile plaque formation in the hippocampus and cerebral cortex of APP/PS1 transgenic mice, and improved learning and memory impairments in Morris water maze assay. In conclusion, our results highlight the potential of NTZ in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Antiparasitarios/farmacología , Modelos Animales de Enfermedad , Aprendizaje/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Tiazoles/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Células Cultivadas , Humanos , Trastornos de la Memoria/metabolismo , Ratones , Nitrocompuestos
18.
Ecotoxicol Environ Saf ; 166: 242-250, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30273847

RESUMEN

The aim of the current study was to determine the potential developmental and metabolic abnormalities caused by Cr (VI) exposure on Bufo gargarizans (B. gargarizans) embryos. B. gargarizans embryos were treated with different concentrations of Cr (VI) (13, 52, 104, 208, and 416 µg Cr6+ L-1) for 6 days. Morphological abnormalities, total length, weight and developmental stage were monitored. Malformations of embryos were also examined using scanning electron microscopy (SEM). In addition, the transcript levels of several genes associated with lipid metabolism, oxidative stress, and thyroid hormones signaling pathways were also determined. Our results showed a time-dependent inhibitory effect of Cr (VI) on the growth and development of B. gargarizans embryos. On day 4, total length, weight, and developmental stage were significantly lower at 416 µg Cr6+ L-1 relative to control embryos. On day 6, significant reductions in total length, weight, and developmental stage were observed at 104, 208, and 416 µg Cr6+ L-1. Malformed embryos were found in all Cr (VI) treatments, which were characterized by axial flexures, yolk sac edema and rupture, surface tissue hyperplasia, stunted growth, wavy fin and fin flexure. RT-qPCR results showed that exposure to Cr (VI) down-regulated TRß and Dio2 mRNA expression and up-regulated Dio3 mRNA level at 416 µg Cr6+ L-1. The transcript levels of SOD and GPx were upregulated at 52, 208, and 416 µg Cr6+ L-1, while the transcript level of HSP90 was downregulated at 52, 208, and 416 µg Cr6+ L-1. Also, mRNA expression of lipid synthesis-related genes (FAE and ACC) were significantly downregulated in embryos treated with 208 and 416 µg Cr6+ L-1, but mRNA expression of fatty acid ß-oxidation-related genes (ACOX, CPT, and SCP) was significantly upregulated at 416 µg Cr6+ L-1. Therefore, our results suggested that Cr (VI) could disrupt thyroid endocrine pathways and lipid synthesis, leading to the inhibition of growth and development in B. gargarizans embryos. Furthermore, the decreased ability of scavenging ROS induced by Cr (VI) might be responsible for the teratogenic effects of Cr (VI).


Asunto(s)
Bufonidae/embriología , Cromo/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Animales , Bufonidae/crecimiento & desarrollo , Disruptores Endocrinos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Hormonas Tiroideas/metabolismo
19.
Bull Environ Contam Toxicol ; 101(2): 178-184, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29947911

RESUMEN

Mining is considered to be one of the most significant sources of environmental pollution with regard to heavy metals. Mineral mining causes large quantities of mercury, cadmium, and other elements to be released into the environment and naturally poses a serious threat to environment. This paper will analyze the pollution status of agricultural soil caused by the mining of heavy metals in various mining areas in the Xunyang County in the Shaanxi Province of China, an area in famous for its resource mining. Equally, it will look at the potential ecological risk assessment process that is used to analyze the ecological risks of mining heavy metals in agricultural soil located in the surrounding areas. Based on the soil investigation, As pose a moderate ecological risk on the Au mining area. In addition, the Hg metals pose a significantly high potential ecological risk and Cd metals pose a considerable potential ecological risk on the Hg mining area. In the Pb-Zn mining area, a significantly high potential ecological risk was mainly posed by Cd. These results suggest that many heavy metals pose a high potential ecological risk on the agricultural soil in these three mining areas in the Xunyang County, and may cause elevated heavy metal contents in crops, eventually jeopardizing the health of local residents who consume food grown in polluted soil.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , China , Productos Agrícolas , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Minería , Medición de Riesgo
20.
J Transl Med ; 14(1): 223, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465579

RESUMEN

BACKGROUND: Studies have indicated that bone marrow stromal cell (BMSC) administration is a promising approach for stroke treatment. For our study, we chose sodium ferulate (SF) and n-butylidenephthalide (BP) combined with BMSC, and observed if the combination treatment possessed more significant effects on angiogenesis and neurogenesis post-stroke. METHODS: We established rat permanent middle cerebral artery occlusion (MCAo) model and evaluated ischemic volumes of MCAo, BMSC, SF + BP, Simvastatin + BMSC and SF + BP + BMSC groups with TTC staining on the 7th day after ischemia. Immunofluorescence staining of vascular endothelial growth factor (VEGF) and brain derived neurotrophic factor (BDNF), as well as immunohistochemistry staining of von Willebrand factor (vWF) and neuronal class III ß-tubulin (Tuj1) were performed in ischemic boundary zone (IBZ), furthermore, to understand the mechanism, western blot was used to investigate AKT/mammalian target of rapamycin (mTOR) signal pathway in ischemic cortex. We also tested BMSC derived-VEGF and BDNF expressions by western blot assay in vitro. RESULTS: SF + BP + BMSC group obviously decreased infarction zone, and elevated the expression of VEGF and the density and perimeter of vWF-vessels as same as Simvastatin + BMSC administration; moreover, its effects on BDNF and Tuj1 expressions were superior to Simvastatin + BMSC treatment in IBZ. Meanwhile, it showed that SF and BP combined with BMSC treatment notably up-regulated AKT/mTOR signal pathway compared with SF + BP group and BMSC alone post-stroke. Western blot results showed that SF and BP treatment could promote BMSCs to synthesize VEGF and BDNF in vitro. CONCLUSIONS: We firstly demonstrate that SF and BP combined with BMSC can significantly improve angiogenesis and neurogenesis in IBZ following stroke. The therapeutic effects are associated with the enhancement of VEGF and BDNF expressions via activation of AKT/mTOR signal pathway. Furthermore, triggering BMSC paracrine function of SF and BP might contribute to amplifying the synergic effects of the combination treatment.


Asunto(s)
Isquemia Encefálica/terapia , Ácidos Cumáricos/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Neurogénesis , Anhídridos Ftálicos/uso terapéutico , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Forma de la Célula , Células Cultivadas , Terapia Combinada , Ácidos Cumáricos/administración & dosificación , Ácidos Cumáricos/farmacología , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fenotipo , Anhídridos Ftálicos/administración & dosificación , Anhídridos Ftálicos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda