Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 96(1): e29368, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180381

RESUMEN

Group A rotavirus (RVA) is considered an important cause of acute gastroenteritis (AGE) in all age groups, especially in children. We investigated the epidemiology of RVA in outpatients aged ≤ 16 years at the Children's Hospital of Fudan University, Shanghai, China. In this study, 16.6% (246/1482) were infected with RVA. The detection rate of RVA was significantly higher in the year of 2021 (20.3%, 147/725) compared to the year of 2020 (14.5%, 77/531) and 2022 (9.7%, 22/226) (p = 0.000). RVA infection was prevalent in all seasons from 2020 to 2022, with a different monthly distribution observed in different years. Among 246 RVA-positive samples, 14 different RVA genotypes were detected with different frequencies. Overall, G9P[8] (45.5%, 112/246) was the most common RVA genotype, followed by G8P[8] (37.4%, 92/246) and G3P[8] (4.1%, 10/246). The prevalence of G/P combinations varied from 2020 to 2022. G9P[8] was the most prevalent circulating genotype in 2020 (68.2%, 15/22) and 2021 (57.8%, 85/147). However, G8P[8] (68.8%, 53/77) suddenly became the most prevalent genotype in 2022 after being first identified in 2020 and prevalent in 2021. The G8 strains detected in the study were all clustered to DS-1-like G8 strains with the closest genetic distance to strains circulating in Southeast Asia. Our study demonstrated the diversity of circulating RVA genotypes in Shanghai. The sudden emergence and high prevalence of unusual G8P[8] strains deserve more concern and indicate the need for continuous surveillance of RVA in children with AGE in the future to refine future vaccine strategy.


Asunto(s)
Gastroenteritis , Rotavirus , Niño , Humanos , Rotavirus/genética , Pacientes Ambulatorios , Prevalencia , China/epidemiología , Gastroenteritis/epidemiología
2.
Virol J ; 21(1): 108, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730285

RESUMEN

BACKGROUND: The immature and suppressed immune response makes transplanted children a special susceptible group to Parvovirus B19 (PVB19). However, the clinical features of transplanted children with PVB19 infection haven't been comprehensively described. METHODS: We searched the medical records of all the transplant recipients who attended the Children's Hospital of Fudan University from 1 Oct 2020 to 31 May 2023, and reviewed the medical literature for PVB19 infection cases among transplanted children. RESULTS: A total of 10 cases of PVB19 infection were identified in 201 transplanted children at our hospital, and the medical records of each of these cases were shown. Also, we retrieved 40 cases of PVB19 infection among transplanted children from the literature, thus summarizing a total of 50 unique cases of PVB19 infection. The median time to the first positive PVB19 DNA detection was 14 weeks post-transplantation. PVB19 IgM and IgG were detected in merely 26% and 24% of the children, respectively. The incidence of graft loss/dysfunction was as high as 36%. Hematopoietic stem cell transplant (HSCT) recipients showed higher PVB19 load, lower HGB level, greater platelet damage, lower PVB19 IgM/IgG positive rates, and more graft dysfunction than solid-organ transplant (SOT) recipients, indicating a more incompetent immune system. CONCLUSIONS: Compared with the published data of transplanted adults, transplanted children displayed distinct clinical features upon PVB19 infection, including lower PVB19 IgM/IgG positive rates, more graft dysfunction, and broader damage on hematopoietic cell lines, which was even more prominent in HSCT recipients, thus should be of greater concern.


Asunto(s)
Anticuerpos Antivirales , Trasplante de Células Madre Hematopoyéticas , Infecciones por Parvoviridae , Parvovirus B19 Humano , Humanos , Parvovirus B19 Humano/inmunología , Parvovirus B19 Humano/genética , Niño , Femenino , Masculino , Preescolar , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Anticuerpos Antivirales/sangre , Lactante , Adolescente , Inmunoglobulina M/sangre , Inmunoglobulina G/sangre , Receptores de Trasplantes , ADN Viral/sangre , Carga Viral , Trasplante de Órganos/efectos adversos
3.
J Exp Clin Cancer Res ; 43(1): 14, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191501

RESUMEN

BACKGROUND: Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS: Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS: The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS: Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.


Asunto(s)
Neoplasias Nasofaríngeas , Ubiquitina-Proteína Ligasas , Humanos , Carcinoma Nasofaríngeo/genética , Ubiquitina-Proteína Ligasas/genética , Vimentina/genética , Transición Epitelial-Mesenquimal , Neoplasias Nasofaríngeas/genética
4.
Front Microbiol ; 15: 1372078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605705

RESUMEN

Introduction: An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods: A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results: The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion: Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.

5.
Oncogene ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154122

RESUMEN

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.

6.
Cell Death Dis ; 15(2): 112, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321024

RESUMEN

Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Docetaxel/uso terapéutico , Neoplasias Nasofaríngeas/patología , Factores de Transcripción/uso terapéutico , Resistencia a Antineoplásicos , Fluorouracilo/uso terapéutico , Quimioradioterapia/métodos , Cisplatino/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ubiquitina Tiolesterasa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda