Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38513838

RESUMEN

BACKGROUND: Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE: We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS: LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 µg/m3, 24-hour equivalent) or moderate (100 µg/m3, 24-hour equivalent) concentrations of LFS PM (10 µm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS: Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS: We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.

2.
Respirology ; 29(3): 217-227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043119

RESUMEN

BACKGROUND AND OBJECTIVE: The resurgence of severe and progressive silicosis among engineered stone benchtop industry workers is a global health crisis. We investigated the link between the physico-chemical characteristics of engineered stone dust and lung cell responses to understand components that pose the greatest risk. METHODS: Respirable dust from 50 resin-based engineered stones, 3 natural stones and 2 non-resin-based materials was generated and analysed for mineralogy, morphology, metals, resin, particle size and charge. Human alveolar epithelial cells and macrophages were exposed in vitro to dust and assessed for cytotoxicity and inflammation. Principal component analysis and stepwise linear regression were used to explore the relationship between engineered stone components and the cellular response. RESULTS: Cutting engineered stone generated fine particles of <600 nm. Crystalline silica was the main component with metal elements such as Ti, Cu, Co and Fe also present. There was some evidence to suggest differences in cytotoxicity (p = 0.061) and IL-6 (p = 0.084) between dust samples. However, IL-8 (CXCL8) and TNF-α levels in macrophages were clearly variable (p < 0.05). Quartz explained 11% of the variance (p = 0.019) in macrophage inflammation while Co and Al accounted for 32% of the variance (p < 0.001) in macrophage toxicity, suggesting that crystalline silica only partly explains the cell response. Two of the reduced-silica, non-engineered stone products induced considerable inflammation in macrophages. CONCLUSION: These data suggest that silica is not the only component of concern in these products, highlighting the caution required as alternative materials are produced in an effort to reduce disease risk.


Asunto(s)
Exposición Profesional , Silicosis , Humanos , Exposición Profesional/efectos adversos , Silicosis/etiología , Pulmón/patología , Dióxido de Silicio/toxicidad , Polvo/análisis , Inflamación/patología
3.
Respirology ; 29(4): 295-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219238

RESUMEN

BACKGROUND AND OBJECTIVE: Chronic, low-intensity air pollution exposure has been consistently associated with reduced lung function throughout childhood. However, there is limited research regarding the implications of acute, high-intensity air pollution exposure. We aimed to determine whether there were any associations between early life exposure to such an episode and lung growth trajectories. METHODS: We conducted a prospective cohort study of children who lived in the vicinity of the Hazelwood coalmine fire. Lung function was measured using respiratory oscillometry. Z-scores were calculated for resistance (R5 ) and reactance at 5 Hz (X5 ) and area under the reactance curve (AX). Two sets of analyses were conducted: (i) linear regression to assess the cross-sectional relationship between post-natal exposure to mine fire-related particulate matter with an aerodynamic diameter of less than 2.5 micrometres (PM2.5 ) and lung function at the 7-year follow-up and (ii) linear mixed-effects models to determine whether there was any association between exposure and changes in lung function between the 3- and 7-year follow-ups. RESULTS: There were no associations between mine fire-related PM2.5 and any of the lung function measures, 7-years later. There were moderate improvements in X5 (ß: -0.37 [-0.64, -0.10] p = 0.009) and AX (ß: -0.40 [-0.72, -0.08] p = 0.014), between the 3- and 7-year follow-ups that were associated with mean PM2.5 , in the unadjusted and covariance-adjusted models. Similar trends were observed with maximum PM2.5 . CONCLUSION: There was a moderate improvement in lung stiffness of children exposed to PM2.5 from a local coalmine fire in infancy, consistent with an early deficit in lung function at 3-years after the fire that had resolved by 7-years.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Humo/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios Prospectivos , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Pulmón , Exposición a Riesgos Ambientales/efectos adversos
4.
J Appl Toxicol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837244

RESUMEN

Engineered stone-associated silicosis is characterised by a rapid progression of fibrosis linked to a shorter duration of exposure. To date, there is lack of information about molecular pathways that regulates disease development and the aggressiveness of this form of silicosis. Therefore, we compared transcriptome responses to different engineered stone samples and standard silica. We then identified and further tested a stone dust specific pathway (aryl hydrocarbon receptor [AhR]) in relation to mitigation of adverse lung cell responses. Cells (epithelial cells, A549; macrophages, THP-1) were exposed to two different benchtop stone samples, standard silica and vehicle control, followed by RNA sequencing analysis. Bioinformatics analyses were conducted, and the expression of dysregulated AhR pathway genes resulting from engineered stone exposure was then correlated with cytokine responses. Finally, we inhibited AhR pathway in cells pretreated with AhR antagonist and observed how this impacted cell cytotoxicity and inflammation. Through transcriptome analysis, we identified the AhR pathway genes (CYP1A1, CYP1B1 and TIPARP) that showed differential expression that was unique to engineered stones and common between both cell types. The expression of these genes was positively correlated with interleukin-8 production in A549 and THP-1 cells. However, we only observed a mild effect of AhR pathway inhibition on engineered stone dust induced cytokine responses. Given the dual roles of AhR pathway in physiological and pathological processes, our data showed that expression of AhR target genes could be markers for assessing toxicity of engineered stones; however, AhR pathway might not play a significant pathologic role in engineered stone-associated silicosis.

5.
Environ Res ; 236(Pt 2): 116868, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567381

RESUMEN

Exposure to geogenic (earth-derived) particulate matter (PM) is linked to an increased prevalence of bronchiectasis and other respiratory infections in Australian Indigenous communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of geogenic PM and iron oxide on the invasiveness of non-typeable Haemophilus influenzae (NTHi). Peripheral blood mononuclear cell-derived macrophages or epithelial cell lines (A549 & BEAS-2B) were exposed to whole geogenic PM, their primary constituents (haematite, magnetite or silica) or diesel exhaust particles (DEP). The uptake of bacteria was quantified by flow cytometry and whole genome sequencing (WGS) was performed on NTHi strains. Geogenic PM increased the invasiveness of NTHi in bronchial epithelial cells. Of the primary constituents, haematite also increased NTHi invasion with magnetite and silica having significantly less impact. Furthermore, we observed varying levels of invasiveness amongst NTHi isolates. WGS analysis suggested isolates with more genes associated with heme acquisition were more virulent in BEAS-2B cells. The present study suggests that geogenic particles can increase the susceptibility of bronchial epithelial cells to select bacterial pathogens in vitro, a response primarily driven by haematite content in the dust. This demonstrates a potential mechanism linking exposure to iron-laden geogenic PM and high rates of chronic respiratory infections in remote communities in arid environments.

6.
Respirology ; 28(11): 1023-1035, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712340

RESUMEN

Landscape fires are increasing in frequency and severity globally. In Australia, extreme bushfires cause a large and increasing health and socioeconomic burden for communities and governments. People with asthma are particularly vulnerable to the effects of landscape fire smoke (LFS) exposure. Here, we present a position statement from the Thoracic Society of Australia and New Zealand. Within this statement we provide a review of the impact of LFS on adults and children with asthma, highlighting the greater impact of LFS on vulnerable groups, particularly older people, pregnant women and Aboriginal and Torres Strait Islander peoples. We also highlight the development of asthma on the background of risk factors (smoking, occupation and atopy). Within this document we present advice for asthma management, smoke mitigation strategies and access to air quality information, that should be implemented during periods of LFS. We promote clinician awareness, and the implementation of public health messaging and preparation, especially for people with asthma.


Asunto(s)
Asma , Humo , Incendios Forestales , Adulto , Anciano , Niño , Femenino , Humanos , Embarazo , Asma/epidemiología , Asma/etiología , Asma/terapia , Australia/epidemiología , Aborigenas Australianos e Isleños del Estrecho de Torres , Nueva Zelanda/epidemiología , Humo/efectos adversos , Costo de Enfermedad , Salud Pública
7.
BMC Pulm Med ; 23(1): 120, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059986

RESUMEN

BACKGROUND AND OBJECTIVE: Studies linking early life exposure to air pollution and subsequent impaired lung health have focused on chronic, low-level exposures in urban settings. We aimed to determine whether in utero exposure to an acute, high-intensity air pollution episode impaired lung function 7-years later. METHOD: We conducted a prospective cohort study of children who lived in the vicinity of a coalmine fire. Respiratory function was measured using the forced oscillation technique (FOT). Z-scores for resistance at 5 Hz (R5), reactance at 5 Hz (X5) and area under the reactance curve (AX) were calculated. Two sets of analyses were conducted to address two separate questions: (1) whether mine fire exposure (a binary indicator; conceived after the mine fire vs in utero exposed) was associated with the respiratory Z-scores; (2) whether there was any dose-response relationship between fire-related PM2.5 exposure and respiratory outcomes among those exposed. RESULTS: Acceptable lung function measurements were obtained from 79 children; 25 unexposed and 54 exposed in utero. Median (interquartile range) for daily average and peak PM2.5 for the exposed children were 4.2 (2.6 - 14.2) and 88 (52-225) µg/m3 respectively. There were no detectable differences in Z-scores between unexposed and exposed children. There were no associations between respiratory Z-scores and in utero exposure to PM2.5 (daily average or peak). CONCLUSION: There was no detectable effect of in utero exposure to PM2.5 from a local coalmine fire on post-natal lung function 7-years later. However, statistical power was limited.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Pulmón , Respiración
8.
BMC Pulm Med ; 23(1): 516, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129862

RESUMEN

BACKGROUND: Evidence on the relationship between air pollution and allergic sensitisation in childhood is inconsistent, and this relationship has not been investigated in the context of smoke events that are predicted to increase with climate change. Thus, we aimed to evaluate associations between exposure in two early life periods to severe levels of particulate matter with an aerodynamic diameter < 2.5 µm (PM2.5) from a mine fire, background PM2.5, and allergic sensitisation later in childhood. METHODS: We measured specific immunoglobulin E (IgE) levels for seven common aeroallergens as well as total IgE levels in a cohort of children who had been exposed to the Hazelwood coal mine fire, either in utero or during their first two years of life, in a regional area of Australia where ambient levels of PM2.5 are generally low. We estimated personal exposure to fire-specific emissions of PM2.5 based on a high-resolution meteorological and pollutant dispersion model and detailed reported movements of pregnant mothers and young children during the fire. We also estimated the usual background exposure to PM2.5 at the residential address at birth using a national satellite-based land-use regression model. Associations between both sources of PM2.5 and sensitisation to dust, cat, fungi, and grass seven years after the fire were estimated with logistic regression, while associations with total IgE levels were estimated with linear regression. RESULTS: No association was found between the levels of exposure at either developmental stage to fire-related PM2.5 and allergic sensitisation seven years after the event. However, levels of background exposure were positively associated with sensitisation to dust (OR = 1.90, 95%CI = 1.12,3.21 per 1 µg/m3). CONCLUSIONS: Chronic but low exposure to PM2.5 in early life could be more strongly associated with allergic sensitisation in childhood than time-limited high exposure levels, such as the ones experienced during landscape fires.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades del Sistema Inmune , Recién Nacido , Embarazo , Niño , Femenino , Humanos , Preescolar , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Material Particulado/análisis , Polvo , Inmunoglobulina E , Exposición a Riesgos Ambientales/efectos adversos
9.
Respir Res ; 23(1): 35, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183181

RESUMEN

BACKGROUND: Lung inhomogeneity plays a pivotal role in the development of ventilator-induced lung injury (VILI), particularly in the context of pre-existing lung injury. The mechanisms that underlie this interaction are poorly understood. We aimed to elucidate the regional transcriptomic response to mechanical ventilation (MV), with or without pre-existing lung injury, and link this to the regional lung volume response to MV. METHODS: Adult female BALB/c mice were randomly assigned into one of four groups: Saline, MV, lipopolysaccharide (LPS) or LPS/MV. Lung volumes (tidal volume, Vt; end-expiratory volume, EEV) were measured at baseline or after 2 h of ventilation using four-dimensional computed tomography (4DCT). Regional lung tissue samples corresponding to specific imaging regions were analysed for the transcriptome response by RNA-Seq. Bioinformatics analyses were conducted and the regional expression of dysregulated gene clusters was then correlated with the lung volume response. RESULTS: MV in the absence of pre-existing lung injury was associated with regional variations in tidal stretch. The addition of LPS also caused regional increases in EEV. We identified 345, 141 and 184 region-specific differentially expressed genes in response to MV, LPS and LPS/MV, respectively. Amongst these candidate genes, up-regulation of genes related to immune responses were positively correlated with increased regional tidal stretch in the MV group, while dysregulation of genes associated with endothelial barrier related pathways were associated with increased regional EEV and Vt when MV was combined with LPS. Further protein-protein interaction analysis led to the identification of two protein clusters representing the PI3K/Akt and MEK/ERK signalling hubs which may explain the interaction between MV and LPS exposure. CONCLUSION: The biological pathways associated with lung volume inhomogeneity during MV, and MV in the presence of pre-existing inflammation, differed. MV related tidal stretch induced up-regulation of immune response genes, while LPS combined with MV disrupted PI3K/Akt and MEK/ERK signalling.


Asunto(s)
Lesión Pulmonar/genética , Mediciones del Volumen Pulmonar/métodos , Respiración Artificial/métodos , Volumen de Ventilación Pulmonar/fisiología , Transcriptoma/genética , Animales , Modelos Animales de Enfermedad , Femenino , Lesión Pulmonar/fisiopatología , Lesión Pulmonar/terapia , Ratones , Ratones Endogámicos BALB C , Transducción de Señal
10.
Environ Res ; 210: 112969, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35183515

RESUMEN

BACKGROUND: While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS: We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS: Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION: This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones del Sistema Respiratorio , Adolescente , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Niño , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Infecciones del Sistema Respiratorio/inducido químicamente , Infecciones del Sistema Respiratorio/epidemiología
11.
Respirology ; 27(6): 447-454, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306722

RESUMEN

BACKGROUND AND OBJECTIVE: Coal mine dust has a complex and heterogeneous chemical composition. It has been suggested that coal particle chemistry plays a critical role in determining the pathogenesis of coal workers' pneumoconiosis (CWP). In this study, we aimed to establish the association between the detrimental cellular response and the chemical composition of coal particles. METHODS: We sourced 19 real-world coal samples. Samples were crushed prior to use to minimize the impact of particle size on the response and to ensure the particles were respirable. Key chemical components and inorganic compounds were quantified in the coal samples. The cytotoxic, inflammatory and pro-fibrotic responses in epithelial cells, macrophages and fibroblasts were assessed following 24 h of exposure to coal particles. Principal component analysis (PCA) and stepwise regression were used to determine which chemical components of the coal particles were associated with the cell response. RESULTS: The cytotoxic, inflammatory and pro-fibrotic response varied considerably between coal samples. There was a high level of collinearity in the cell responses and between the chemical compounds within the coal samples. PCA identified three factors that explained 75% of the variance in the cell response. Stepwise multiple regression analysis identified K2 O (p <0.001) and Fe2 O3 (p = 0.011) as significant predictors of cytotoxicity and cytokine production, respectively. CONCLUSION: Our data clearly demonstrate that the detrimental cellular effects of exposure to coal mine dusts are highly dependent on particle chemistry. This has implications for understanding the pathogenesis of CWP.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Carbón Mineral/efectos adversos , Polvo/análisis , Humanos , Pulmón , Neumoconiosis/etiología
12.
BMC Pregnancy Childbirth ; 22(1): 919, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482359

RESUMEN

BACKGROUND: Little is known about the physical and mental health impact of exposure to landscape fire smoke in women with asthma. This study examined the health impacts and information-seeking behaviours of women with asthma exposed to the 2019/2020 Australian fires, including women who were pregnant. METHODS: Women with asthma were recruited from the Breathing for Life Trial in Australia. Following the landscape fire exposure period, self-reported data were collected regarding symptoms (respiratory and non-respiratory), asthma exacerbations, wellbeing, quality of life, information seeking, and landscape fire smoke exposure mitigation strategies. Participants' primary residential location and fixed site monitoring was used to geolocate and estimate exposure to landscape fire-related fine Particulate Matter (PM2.5). RESULTS: The survey was completed by 81 pregnant, 70 breastfeeding and 232 non-pregnant and non-breastfeeding women with asthma. Participants had a median daily average of 17 µg/m3 PM2.5 and 105 µg/m3 peak PM2.5 exposure over the fire period (October 2019 to February 2020). Over 80% of participants reported non-respiratory and respiratory symptoms during the fire period and 41% reported persistent symptoms. Over 82% reported asthma symptoms and exacerbations of asthma during the fire period. Half the participants sought advice from a health professional for their symptoms. Most (97%) kept windows/doors shut when inside and 94% stayed indoors to minimise exposure to landscape fire smoke. Over two in five (43%) participants reported that their capacity to participate in usual activities was reduced due to prolonged smoke exposure during the fire period. Participants reported greater anxiety during the fire period than after the fire period (mean (SD) = 53(13) versus 39 (13); p < 0.001). Two in five (38%) pregnant participants reported having concerns about the effect of fire events on their pregnancy. CONCLUSION: Prolonged landscape fire smoke exposure during the 2019/2020 Australian fire period had a significant impact on the health and wellbeing of women with asthma, including pregnant women with asthma. This was despite most women taking actions to minimise exposure to landscape fire smoke. Effective and consistent public health messaging is needed during landscape fire events to guard the health of women with asthma.


Asunto(s)
Calidad de Vida , Embarazo , Femenino , Humanos , Australia/epidemiología
13.
Environ Res ; 198: 110489, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33220241

RESUMEN

BACKGROUND: Previous studies have shown an association between prenatal exposure to particulate matter (PM) and adverse brain development. However, it is unclear whether gestational exposure to community-sampled residential PM has an impact on the developing brain. OBJECTIVES: We aimed to test whether in utero exposure to PM from residential roof spaces (ceiling voids) alters critical foetal neurodevelopmental processes. METHODS: Pregnant C57BL/6 mice were intranasally exposed to 100 µg of roof space particles (~5 mg kg-1) in 50 µl of saline, or saline alone under light methoxyflurane anaesthesia, throughout mid-to-late gestation. At 2 weeks post-natal age, pups were sacrificed and assessed for body and brain growth. The brain tissue was collected and examined for a range of neurodevelopmental markers for synaptogenesis, synaptic plasticity, gliogenic events and myelination by immunohistochemistry. RESULTS: Gestational exposure to roof space PM reduced post-natal body and brain weights. There was no significant effect of roof space PM exposure on synaptogenesis, synaptic plasticity or astrocyte density. However, PM exposure caused increased myelin load in the white matter and elevated microglial density which was dependent on the PM sample. These effects were found to be consistent between male and female mice. CONCLUSIONS: Our data suggest that exposure to residential roof space PM during pregnancy impairs somatic growth and causes neuropathological changes in the developing brain.


Asunto(s)
Polvo , Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
14.
Respirology ; 26(11): 1060-1066, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339550

RESUMEN

BACKGROUND AND OBJECTIVE: The link between respiratory and vascular health is well documented in adult populations. Impaired lung function is consistently associated with thicker arteries and higher incidence of cardiovascular disease. However, there are limited data on this relationship in young children and the studies that exist have focussed on populations at high risk of cardiorespiratory morbidity. We determined if an association exists between respiratory and cardiovascular function in young children and, if so, whether it is confounded by known cardiorespiratory risk factors. METHODS: Respiratory and vascular data from a prospective cohort study established to evaluate the health implications 3 years after coal mine fire smoke exposure in children aged 3-5 years were used. Respiratory function was measured using the forced oscillation technique and included resistance at 5 Hz (R5 ), reactance at 5 Hz (X5 ) and area under the reactance curve (AX). Vascular health was measured by carotid intima-media thickness (ultrasound) and pulse wave velocity (arterial tonometry). Regression analyses were used to examine the relationship between the respiratory Z-scores and cardiovascular measures. Subsequent analyses were adjusted for potential confounding by maternal smoking during pregnancy, maternal education and exposure to fine particulate matter <2.5 µm in aerodynamic diameter (PM2.5 ). RESULTS: Peripheral lung function (X5 and AX), but not respiratory system resistance (R5 ), was associated with vascular function. Adjustment for maternal smoking, maternal education and early life exposure to PM2.5 had minimal effect on these associations. CONCLUSION: These observations suggest that peripheral lung stiffness is associated with vascular stiffness and that this relationship is established early in life.


Asunto(s)
Grosor Intima-Media Carotídeo , Incendios , Adulto , Niño , Preescolar , Femenino , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Embarazo , Estudios Prospectivos , Análisis de la Onda del Pulso
15.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445491

RESUMEN

In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.


Asunto(s)
Hiperreactividad Bronquial/tratamiento farmacológico , Cloruro de Metacolina/administración & dosificación , Infecciones por Orthomyxoviridae/complicaciones , Ovalbúmina/inmunología , Pyroglyphidae/inmunología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Hiperreactividad Bronquial/etiología , Claudina-1/metabolismo , Regulación hacia Abajo , Femenino , Virus de la Influenza A/patogenicidad , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Ovalbúmina/administración & dosificación , Resultado del Tratamiento
16.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L494-L499, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31940217

RESUMEN

Both overdistension and atelectasis contribute to lung injury and mortality during mechanical ventilation. It has been proposed that combinations of tidal volume and end-expiratory lung volume exist that minimize lung injury linked to mechanical ventilation. The aim of this study was to examine this at the regional level in the healthy and endotoxemic lung. Adult female BALB/c mice were injected intraperitoneally with 10 mg/kg lipopolysaccharide (LPS) in saline or with saline alone. Four hours later, mice were mechanically ventilated for 2 h. Regional specific end-expiratory volume (sEEV) and tidal volume (sVt) were measured at baseline and after 2 h of ventilation using dynamic high-resolution four-dimensional computed tomography images. The regional expression of inflammatory genes was quantified by quantitative PCR. There was a heterogenous response in regional sEEV whereby endotoxemia increased gas trapping at end-expiration in some lung regions. Within the healthy group, there was a relationship between sEEV, sVt, and the expression of Tnfa, where high Vt in combination with high EEV or very low EEV was associated with an increase in gene expression. In endotoxemia there was an association between low sEEV, particularly when this was combined with moderate sVt, and high expression of IL6. Our data suggest that preexisting systemic inflammation modifies the relationship between regional lung volumes and inflammation and that although optimum EEV-Vt combinations to minimize injury exist, further studies are required to identify the critical inflammatory mediators to assess and the effect of different injury types on the response.


Asunto(s)
Endotoxemia/complicaciones , Inflamación/etiología , Pulmón/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Animales , Femenino , Perfilación de la Expresión Génica , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos BALB C , Respiración Artificial , Volumen de Ventilación Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
17.
Med J Aust ; 213(6): 269-275, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32770850

RESUMEN

OBJECTIVE: To evaluate associations between exposure during early life to mine fire smoke and parent-reported indicators of respiratory and atopic illness 2-4 years later. DESIGN, SETTING: The Hazelwood coalmine fire exposed a regional Australian community to markedly increased air pollution during February - March 2014. During June 2016 - October 2018 we conducted a prospective cohort study of children from the Latrobe Valley. PARTICIPANTS: Seventy-nine children exposed to smoke in utero, 81 exposed during early childhood (0-2 years of age), and 129 children conceived after the fire (ie, unexposed). EXPOSURE: Individualised mean daily and peak 24-hour fire-attributable fine particulate matter (PM2.5 ) exposure during the fire period, based on modelled air quality and time-activity data. MAIN OUTCOME MEASURES: Parent-reported symptoms, medications use, and contacts with medical professionals, collected in monthly online diaries for 29 months, 2-4 years after the fire. RESULTS: In the in utero exposure analysis (2678 monthly diaries for 160 children exposed in utero or unexposed), each 10 µg/m3 increase in mean daily PM2.5 exposure was associated with increased reports of runny nose/cough (relative risk [RR], 1.09; 95% CI, 1.02-1.17), wheeze (RR, 1.56; 95% CI, 1.18-2.07), seeking health professional advice (RR, 1.17; 95% CI 1.06-1.29), and doctor diagnoses of upper respiratory tract infections, cold or flu (RR, 1.35; 95% CI, 1.14-1.60). Associations with peak 24-hour PM2.5 exposure were similar. In the early childhood exposure analysis (3290 diaries for 210 children exposed during early childhood, or unexposed), each 100 µg/m3 increase in peak 24-hour PM2.5 exposure was associated with increased use of asthma inhalers (RR, 1.26; 95% CI, 1.01-1.58). CONCLUSIONS: Exposure to mine fire smoke in utero was associated with increased reports by parents of respiratory infections and wheeze in their children 2-4 years later.


Asunto(s)
Incendios , Exposición Materna/efectos adversos , Ruidos Respiratorios/etiología , Infecciones del Sistema Respiratorio/etiología , Humo/efectos adversos , Contaminación del Aire , Australia/epidemiología , Preescolar , Carbón Mineral , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Material Particulado/análisis , Embarazo , Estudios Prospectivos , Análisis de Regresión , Infecciones del Sistema Respiratorio/epidemiología , Humo/análisis
18.
Respirology ; 25(2): 198-205, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31231911

RESUMEN

BACKGROUND AND OBJECTIVE: Long-term respiratory risks following exposure to relatively short periods of poor air quality early in life are unknown. We aimed to evaluate the association between exposure to a 6-week episode of air pollution from a coal mine fire in children aged <2 years, and their lung function 3 years after the fire. METHODS: We conducted a prospective cohort study. Individual exposure to 24-h average and peak concentrations of particulate matter with an aerodynamic diameter <2.5 µm in diameter (PM2.5 ) during the fire were estimated using dispersion and chemical transport modelling. Lung function was measured using the forced oscillation technique (FOT), generating standardized Z-scores for resistance and reactance at a frequency of 5 Hz (Rrs5 and Xrs5 ), and area under the reactance curve (AX). We used linear regression models to assess the associations between PM2.5 exposure and lung function, adjusted for potential confounders. RESULTS: Of the 203 infants originally recruited, 84 aged 4.3 ± 0.5 years completed FOT testing. Median (interquartile range, IQR) for average and peak PM2.5 were 7.9 (6.8-16.8) and 103.4 (60.6-150.7) µg/m3 , respectively. The mean ± SD Z-scores for Rrs5 , Xrs5 and AX were 0.56 ± 0.80, -0.76 ± 0.88 and 0.72 ± 0.92, respectively. After adjustment for potential confounders including maternal smoking during pregnancy, a 10 µg/m3 increase in average PM2.5 was significantly associated with worsening AX (ß-coefficient: 0.260; 95% CI: 0.019, 0.502), while the association between a 100-µg/m3 increase in peak PM2.5 and AX was borderline (0.166; 95% CI: -0.002, 0.334). CONCLUSION: Infant exposure to coal mine fire emissions could be associated with long-term impairment of lung reactance.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Pulmón/fisiopatología , Material Particulado/efectos adversos , Humo/efectos adversos , Preescolar , Minas de Carbón , Femenino , Incendios , Humanos , Lactante , Masculino , Embarazo , Estudios Prospectivos
19.
Am J Respir Cell Mol Biol ; 60(5): 569-577, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30428271

RESUMEN

The aim of this study was to assess the association between regional tidal volume (Vt), regional functional residual capacity (FRC), and the expression of genes linked with ventilator-induced lung injury. Two groups of BALB/c mice (n = 8 per group) were ventilated for 2 hours using a protective or injurious ventilation strategy, with free-breathing mice used as control animals. Regional Vt and FRC of the ventilated mice was determined by analysis of high-resolution four-dimensional computed tomographic images taken at baseline and after 2 hours of ventilation and corrected for the volume of the region (i.e., specific [s]Vt and specific [s]FRC). RNA concentrations of 21 genes in 10 different lung regions were quantified using a quantitative PCR array. sFRC at baseline varied regionally, independent of ventilation strategy, whereas sVt varied regionally depending on ventilation strategy. The expression of IL-6 (P = 0.04), Ccl2 (P < 0.01), and Ang-2 (P < 0.05) was associated with sVt but not sFRC. The expression of seven other genes varied regionally (IL-1ß and RAGE [receptor for advanced glycation end products]) or depended on ventilation strategy (Nfe2l2 [nuclear factor erythroid-derived 2 factor 2], c-fos, and Wnt1) or both (TNF-α and Cxcl2), but it was not associated with regional sFRC or sVt. These observations suggest that regional inflammatory responses to mechanical ventilation are driven primarily by tidal stretch.


Asunto(s)
Fenómenos Biomecánicos/inmunología , Regulación de la Expresión Génica/inmunología , Pulmón/inmunología , Respiración Artificial/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CXCL2/genética , Quimiocina CXCL2/inmunología , Tomografía Computarizada Cuatridimensional , Interpretación de Imagen Asistida por Computador , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/inmunología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/inmunología , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/inmunología , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/inmunología , Transducción de Señal , Volumen de Ventilación Pulmonar/genética , Volumen de Ventilación Pulmonar/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico por imagen , Lesión Pulmonar Inducida por Ventilación Mecánica/inmunología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Proteína Wnt1/genética , Proteína Wnt1/inmunología
20.
Pulm Pharmacol Ther ; 58: 101833, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376462

RESUMEN

While effective treatments for acute respiratory distress syndrome (ARDS) are lacking, mechanical lung ventilation can sustain adequate gas exchange in critically ill patients with respiratory failure due to ARDS. However, as a result of the phenomenon of ventilator-induced lung injury (VILI), there is an increasing need to seek beneficial pharmacological therapies for ARDS. Recent studies have suggested the renin-angiotensin system (RAS), which consists of the ACE/Ang-II/AT1R axis and ACE2/Ang-(1-7)/MasR axis, plays a dual role in the pathogenesis of ARDS and VILI. This review highlights the deleterious action of ACE/Ang-II/AT1R axis and the beneficial role of ACE2/Ang-(1-7)/MasR axis, as well as AT2R, in VILI and ARDS, and also discusses the possibility of targeting RAS components with pharmacological interventions to improve outcomes in ARDS.


Asunto(s)
Sistema Renina-Angiotensina/efectos de los fármacos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Animales , Humanos , Proto-Oncogenes Mas , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda