Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Int J Hyperthermia ; 41(1): 2389292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134063

RESUMEN

Background: High intensity focused ultrasound (HIFU) can destroy tissue by thermal ablation which may be accompanied by acoustic cavitation and/or tissue water boiling, but the biological and histological effects of these treatments have not been fully documented. Here, detailed histological analysis over time using well characterized HIFU exposures in in vivo rat livers is described.Methods: Exposures used invoked either (i) thermal, with acoustic cavitation and/or tissue water boiling or (ii) predominantly thermal damage. Cavitation activity was detected using both active and passive methods. Histological assessment involved hematoxylin and eosin (H&E), picrosirius red and immunohistochemical staining.Results: Distinct concentric damage regions were identified after HIFU exposures. The outermost ring showed a red H&E-stained rim that was characterized by hemorrhage. The adjacent inner band appeared white due to increased extracellular spaces. The morphology of the next zone depended on the exposure. Where there was no tissue acoustic cavitation/water boiling, this was the lesion center, in which heat-fixed cells were seen. Where acoustic cavitation/boiling occurred, a centermost zone with irregular holes up to several hundred microns across was seen. Cleaved caspase-3 and Hsp70 staining in the periphery of both types of HIFU exposures was seen within the outermost ring of hemorrhage, where an inflammatory response was also observed. By day 7, a distinct acellular region in the center of the HIFU lesions had been created.Conclusions: These results identify the morphological effects and elucidate the similarities and differences of HIFU-induced thermal lesions in the presence or absence of acoustic cavitation/tissue water boiling.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Animales , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ratas , Hígado/patología , Masculino , Ratas Sprague-Dawley
2.
Environ Monit Assess ; 196(5): 431, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580863

RESUMEN

Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.


Asunto(s)
Oxidantes , Tartrazina , Humanos , Peróxido de Hidrógeno , Cinética , Hierro , Monitoreo del Ambiente , Rayos Ultravioleta , Oxidación-Reducción
3.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36591874

RESUMEN

There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.

4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674582

RESUMEN

As-prepared mesoporous silicon nanoparticles, which were synthesized by electrochemical etching of crystalline silicon wafers followed by high-energy milling in water, were explored as a sonosensitizer in aqueous media under irradiation with low-intensity ultrasound at 0.88 MHz. Due to the mixed oxide-hydride coating of the nanoparticles' surfaces, they showed both acceptable colloidal stability and sonosensitization of the acoustic cavitation. The latter was directly measured and quantified as a cavitation energy index, i.e., time integral of the magnitude of ultrasound subharmonics. The index turned out to be several times greater for nanoparticle suspensions as compared to pure water, and it depended nonmonotonically on nanoparticle concentration. In vitro tests with Lactobacillus casei revealed a dramatic drop of the bacterial viability and damage of the cells after ultrasonic irradiation with intensity of about 1 W/cm2 in the presence of nanoparticles, which themselves are almost non-toxic at the studied concentrations of about 1 mg/mL. The experimental results prove that nanoparticle-sensitized cavitation bubbles nearby bacteria can cause bacterial lysis and death. The sonosensitizing properties of freshly prepared mesoporous silicon nanoparticles are beneficial for their application in mild antibacterial therapy and treatment of liquid media.


Asunto(s)
Nanopartículas , Silicio , Silicio/farmacología , Nanopartículas/química , Acústica , Antibacterianos/farmacología , Ultrasonografía
5.
Biomed Microdevices ; 24(4): 35, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36279001

RESUMEN

Ultrasounds are already broadly exploited in clinical diagnostics and are now becoming a powerful and not harmful tool in antitumoral therapies, as they are able to produce damages towards cancer cells, thank to inertial cavitation and temperature increase. The use of US alone or combined to molecular compounds, microbubbles or solid-state nanoparticles is the focus of current research and clinical trials, like thermoablation, drug sonoporation or sonodynamic therapies. In the present work, we discuss on the non-thermal effects of ultrasound and the conditions which enable oxygen radical production and which role they can have in provoking the death of different cancer cell lines. In this perspective, we set a mathematical model to predict the pressure spatial distribution in a defined water sample volume and thus obtain a map of acoustic pressures and acoustic intensities of the applied ultrasound at different input powers. We then validate and verify these numerical results with direct acoustic measurements and by detecting the production of reactive oxygen species (ROS) by means of sonochemiluminescence (SCL) and electron paramagnetic resonance (EPR) spectroscopy, applied to the same water sample volume and using the same US input parameters adopted in the simulation. Finally, the various US conditions are applied to two different set of cancer cell lines, a cervical adenocarcinoma and a hematological cancer, Burkitt's lymphoma. We hypothesize how the ROS generation can influence the recorded cell death. In a second set of experiments, the role of semiconductor metal oxide nanocrystals, i.e. zinc oxide, is also evaluated by adding them to the water and biological systems. In particular, the role of ZnO in enhancing the ROS production is verified. Furthermore, the interplay among US and ZnO nanocrystals is evaluated in provoking cancer cell death at specific conditions. This study demonstrates a useful correlation between numerical simulation and experimental acoustic validation as well as with ROS measurement at both qualitative and quantitative levels during US irradiation of simple water solution. It further tries to translate the obtained results to justify one of the possible mechanisms responsible of cancer cell death. It thus aims to pave the way for the use of US in cancer therapy and a better understanding on the non-thermal effect that a specific set of US parameters can have on cancer cells cultured in vitro.


Asunto(s)
Nanopartículas , Neoplasias , Óxido de Zinc , Humanos , Especies Reactivas de Oxígeno , Microburbujas , Neoplasias/diagnóstico por imagen , Agua
6.
Crit Rev Food Sci Nutr ; 62(4): 889-904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33030040

RESUMEN

There is a growing interest on ultrasonic processing of dairy products, especially fermented dairy products which are a basis to functional foods. The studies have shown that power ultrasound can enhance the fermentation process of lactic acid bacteria by modifying their metabolic activity while reducing fermentation time and improving the quality characteristics of fermented milk products. Fermentation is one of the important stages in the processing of dairy products, but it is also one of the most time and resource consuming stages during production. Thus, the benefits of ultrasound to the fermentation process due to microbial activation become increasingly important. In fact, ultrasound applications have the dual effect on microorganisms. Besides being used for microbial activation in dairy industry, it can also be used for inactivation of microorganisms depending on ultrasound power and frequency, sonication time, microorganism type, pH, and temperature. This review article summarizes the effect of power ultrasound on microbial inactivation and microbial growth based on fermentation profile of dairy products, with a theoretical background on ultrasound, including research findings. Also, the details on the activation and inactivation mechanisms of power ultrasound to microorganisms are presented.


Asunto(s)
Productos Lácteos Cultivados , Lactobacillales , Industria Lechera , Fermentación , Viabilidad Microbiana
7.
Environ Res ; 205: 112463, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856168

RESUMEN

The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
8.
J Clean Prod ; 330: 129789, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35095219

RESUMEN

Pectin is a valuable biopolymer used as a natural, clean label additive for thickening and gelling. However, industry faces issues with dispersibility and stability of pectin formulations. To address these issues, the effect of short processing time (30-180 s) with hydrodynamic (HC) and acoustic cavitation (AC) on the dispersibility and gelling functionality of mandarin pectin-rich polysaccharide (M-PRP) was investigated. Short-time processing with HC and AC did not affect polymer composition. HC, but not AC, decreased polydispersity index (PDI) from 0.78 to 0.68 compared to the control. Electron and atomic force microscopy showed that HC and AC decreased aggregation of fibrous and matrix polymers. Both treatments increased apparent viscosity significantly from 0.059 Pa s to 0.30 Pa s at 10 -s. The pectin dispersions showed good gelling capacity upon addition of calcium (final conc. 35 mM). HC and AC treatments for 150 s led to gels that were 7 and 4 times stronger (as measured by peak force) than the control with more homogeneous, less porous structures. In conclusion, short-time HC and AC can improve the dispersibility and functionality of citrus pectin without affecting composition, and are promising technologies to facilitate the use of pectin in industry applications.

9.
Medicina (Kaunas) ; 58(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888600

RESUMEN

Background and Objectives: Petechial cerebral hemorrhages can be caused by various factors, such as traumas, cerebral infarctions, and aging, and is related to the disruption of the blood-brain barrier or the cellular damage of blood vessels. However, there is no animal model that recapitulates cerebral petechial hemorrhages. Materials and Methods: Here, we implemented a petechial hemorrhage using a novel technology, i.e., microbubble-assisted focused ultrasound (MB + FUS). Results: This method increases the permeability of the blood-brain barrier by directly applying mechanical force to the vascular endothelial cells through cavitation of the microbubbles. Microbubble-enhanced cavitation has the advantage of controlling the degree and location of petechial hemorrhages. Conclusions: We thus generated a preclinical rat model using noninvasive focal MB + FUS. This method is histologically similar to actual petechial hemorrhages of the brain and allows the achievement of a physiologically resembling petechial hemorrhage. In the future, this method shall be considered as a useful animal model for studying the pathophysiology and treatment of petechial cerebral hemorrhages.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/fisiología , Hemorragia Cerebral/diagnóstico por imagen , Modelos Animales de Enfermedad , Microburbujas , Ratas
10.
J Environ Manage ; 281: 111792, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383477

RESUMEN

The present work investigates the treatment of commercial effluent obtained from Common Effluent Treatment Plants (CETP) using acoustic cavitation (AC) and hydrodynamic cavitation (HC) based hybrid AOPs. Comparison of different hybrid AOPs viz. H2O2, Fe2+/H2O2, Fe2+/H2O2/Air, Fe2+/H2O2/S2O82- and Fe2+/H2O2/S2O82-/Air in combination with both AC and HC has been performed in terms of extent of chemical oxygen demand (COD) reduction and kinetic rate constants. The best results of COD reduction as 95.2% and 97.28% were obtained for AC/Fe2+/H2O2/Air and HC/Fe2+/H2O2/Air systems respectively at Fe2+/H2O2 ratio of 0.1 and pH of 2 within 60 min of treatment under conditions of ultrasonic power dissipation as 150 W, inlet pressure for HC as 4 bar (as applicable depending on process) and temperature of 30 ± 2 °C. Slightly lower efficacy was established for the combination approach involving AC or HC coupled with Fe2+-activated S2O82- and H2O2 yielding COD reduction of 82.9% and 86.93% for the AC/Fe2+/H2O2/S2O82-/Air and HC/Fe2+/H2O2/S2O82-/Air systems respectively at Fe2+/H2O2/S2O82- ratio of 1:40:17.5. Cost estimation on the basis of cavitational yield performed on the AC and HC based treatment systems revealed economical nature of HC based treatment. Kinetic studies were also performed by fitting the experimental data with pseudo first order kinetic model (PFOKM), generalized kinetic model (GKM) and Behnajady-Modirshahla-Ghanbery kinetic model (BMGKM). It was demonstrated that GKM provided best fitting for all the experiments whereas BMGKM was most suitable for Fenton based reactions. It was clearly established that complex CETP effluent can be effectively treated using the combined approaches based on HC with potential for larger scale operation.


Asunto(s)
Hidrodinámica , Contaminantes Químicos del Agua , Acústica , Análisis de la Demanda Biológica de Oxígeno , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción
11.
J Environ Manage ; 300: 113786, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34649311

RESUMEN

Acoustic cavitation (AC) and hydrodynamic cavitation (HC) coupled with advanced oxidation processes (AOPs) are prominent techniques used for industrial wastewater treatment though most studies have focused on simulated effluents. The present review mainly focuses on the analysis of studies related to real industrial effluent treatment using acoustic and hydrodynamic cavitation operated individually and coupled with H2O2, ozone, ultraviolet, Fenton, persulfate and peroxymonosulfate, and other emerging AOPs. The necessity of using optimum loadings of oxidants in the various AOPs for obtaining maximum COD reduction of industrial effluent have been demonstrated. The review also presents critical analysis of designs of various HCRs that have been or can be used for the treatment of industrial effluents. The impact of operating conditions such as dilution, inlet pressure, ultrasonic power, pH, and operating temperature have been also discussed. The economic aspects of the industrial effluent treatment have been analyzed. HC can be considered as cost-efficient approach compared to AC on the basis of the lower operating costs and better transfer efficiencies. Overall, HC combined with AOPs appears to be an effective treatment strategy that can be successfully implemented at industrial-scale of operation.


Asunto(s)
Ozono , Purificación del Agua , Hidrodinámica , Peróxido de Hidrógeno , Oxidación-Reducción , Aguas Residuales
12.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684747

RESUMEN

While the sonochemical grafting of molecules on silicon hydride surface to form stable Si-C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si-H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si-C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author's knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.

13.
Molecules ; 26(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34500551

RESUMEN

The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.


Asunto(s)
Fitoquímicos/química , Tecnología/métodos , Animales , Plantas/química , Ondas Ultrasónicas
14.
Angew Chem Int Ed Engl ; 60(14): 7802-7808, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33404175

RESUMEN

Metal-organic frameworks (MOFs)-based yolk-shell nanostructures have drawn enormous attention recently due to their multifunctionality. However, the regulations of the size and morphology of yolk-shell nanostructures are still limited by the unclear formation mechanism. Herein, we first demonstrated a solvent-dependent adsorption-driven mechanism for synthesizing yolk-shelled MOFs-based nanostructures coated with mesoporous SiO2 shells (ZIF-8@mSiO2 ) with tunable size and morphology. The selective and competitive adsorption of methanol (CH3 OH) and water (H2 O) on ZIF-8 core were found to have decisive effects on inducing the morphology evolution of yolk-shell nanostructures. The obtained yolk-shelled ZIF-8@mSiO2 nanostructures show great promise in generating acoustic cavitation effect for sonodynamic cancer therapy in vitro. We believe that this work will not only help us to design novel MOFs-based yolk-shell nanostructures, but also promote the widespread application of MOFs materials.

15.
J Magn Reson Imaging ; 51(1): 311-318, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125166

RESUMEN

BACKGROUND: Gadolinium-based contrast agents can be used to identify the blood-brain barrier (BBB) opening after inducing a focused ultrasound (FUS) cavitation effect in the presence of microbubbles. However, the use of gadolinium may be limited for frequent routine monitoring of the BBB opening in clinical applications. PURPOSE: To use a gradient-echo sequence without contrast agent administration for monitoring of acoustic cavitation. STUDY TYPE: Animal and phantom prospective. PHANTOM/ANIMAL MODEL: Static and flowing gel phantoms; six normal adult male Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE: 3T, 7T; fast low-angle shot sequence. ASSESSMENT: Burst FUS with acoustic pressures = 1.5, 2.2, 2.8 MPa; pulse repetition frequencies = 1, 10,100 Hz; and duty cycles = 2%, 5%, 10% were transmitted to the chamber of a static phantom with microbubble concentrations = 10%, 1%, 0.1%. MR slice thicknesses = 3, 6, 8 mm were acquired. In flowing phantom experiments, 0.1%, 0.25%, 0.5%, 0.75%, and 1% microbubbles were infused and transmitted by burst FUS with an acoustic pressure = 0.4 and 1 MPa. In in vivo experiments, 0.25% microbubbles was infused and 0.8 MPa burst FUS was transmitted to targeted brain tissue beneath the superior sagittal sinus. The mean signal intensity (SI) was normalized using the mean SI from pre-FUS. STATISTICAL TESTS: Two-tailed Student's t-test. P < 0.05 was considered statistically significant. RESULTS: In the static phantom, the time courses of normalized SI decreases to minimum SI levels of 70-80%. In the flowing phantom, substantial normalized SI of 160-230% was present with variant acoustic pressures and microbubble concentrations. Compared with in vivo control rats, the brain tissue of experimental rats with transmission of FUS pulses exhibited considerable decreases of normalized SI (P < 0.001) because of the cavitation-induced perturbation of flow. DATA CONCLUSION: Observing gradient-echo SI changes can help monitor the targeted location of microbubble-enhanced FUS, which in turn assists the monitoring of the BBB opening. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:311-318.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos , Microburbujas , Sonicación/métodos , Acústica , Animales , Masculino , Modelos Animales , Fantasmas de Imagen , Ratas , Ratas Sprague-Dawley
16.
Proc Natl Acad Sci U S A ; 114(48): E10281-E10290, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133392

RESUMEN

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Glioma/terapia , Terapia por Ultrasonido/métodos , Acústica/instrumentación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Carbocianinas/química , Carbocianinas/farmacocinética , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/instrumentación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Glioma/diagnóstico por imagen , Glioma/metabolismo , Glioma/patología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteínas Luminiscentes/química , Proteínas Luminiscentes/farmacocinética , Imagen por Resonancia Magnética , Masculino , Microburbujas , Terapia Molecular Dirigida , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Transductores , Ondas Ultrasónicas
17.
Nano Lett ; 19(4): 2251-2258, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30868886

RESUMEN

The surface bioinspired modification of particles and films is a mainstream direction in biomaterial design and application. The interfacial coating of extracellular-matrix-like hydrogel can endow functional inorganic nanoparticles high circulation stability and biocompatibility but remains challenging due to large surface tension difference between organic gelators and solid nanosurfaces. Herein, the supramolecular hydrogel of NapGdFdFdK around gold nanorods (Au NRs-Gel) has been constructed by the amidation-grafting modification and the protonation-induced interface-assistant assembly of peptide precursors. As a proof of concept study, the acoustic cavitation experiments and in vitro ultrasound imaging have proved that the abundant hydrophobic microdomains as well as the water-rich network in the supramolecular hydrogel can serve as valid sites to efficiently generate and stabilize nanobubbles as cavitation seeds to realize bubble-free ultrasound imaging. In vivo augmented ultrasound imaging and imaging-guided high intensity focused ultrasound (HIFU) therapy based on the Balb/c mice bearing HeLa tumor model have been conducted. As the first example of using nanosurface hydrogelation to endow nanoparticles with bubble-free ultrasound theranostic ability, this work offers a simple approach to design multifunctional nanovehicles for ultrasound-guided drug/protein/gene delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanotubos/química , Péptidos/administración & dosificación , Nanomedicina Teranóstica/métodos , Acústica , Animales , Oro/química , Células HeLa , Ultrasonido Enfocado de Alta Intensidad de Ablación , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administración & dosificación , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratones , Péptidos/química , Ultrasonografía , Ensayos Antitumor por Modelo de Xenoinjerto
18.
BMC Biotechnol ; 17(1): 45, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521780

RESUMEN

BACKGROUND: Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This study investigates USMB effects on the molecular release from cells through membrane-disruption and exocytosis. RESULTS: USMB induced the release of 19% and 67% of GFP from the cytoplasm in viable and non-viable cells, respectively. Tfn release from early/recycling endosomes increased by 23% in viable cells upon USMB treatment. In addition, the MFI of LAMP-1 antibody increased by 50% in viable cells, suggesting USMB-stimulated lysosome exocytosis. In non-viable cells, labeling of LAMP-1 intracellular structures in the absence of cell permeabilization by detergents suggests that USMB-induced cell death correlates with lysosomal permeabilization. CONCLUSIONS: In conclusion, USMB enhanced the molecular release from the cytoplasm, lysosomes, and early/recycling endosomes.


Asunto(s)
Citoplasma/metabolismo , Microburbujas , Sonicación , Anticuerpos/inmunología , Línea Celular , Supervivencia Celular , Endosomas/metabolismo , Exocitosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Microscopía Fluorescente , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
19.
J Membr Biol ; 250(1): 41-52, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27550074

RESUMEN

Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.


Asunto(s)
Membrana Celular , Células Eucariotas , Ondas de Choque de Alta Energía , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Supervivencia Celular , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Células HEK293 , Ondas de Choque de Alta Energía/efectos adversos , Humanos , Células MCF-7 , Transfección
20.
Ultrason Sonochem ; 104: 106810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377804

RESUMEN

The role of acoustic cavitation in various surface cleaning disciplines is important. However, the physical mechanisms underlying acoustic cavitation-induced surface cleansing are poorly understood. This is due to the combination of microscopic and ultrashort timescales associated with the dynamics of acoustic cavitation bubbles. Here, we have precisely controlled single-bubble cavitation in both space and time. Ultrasonic excitation leads to the cavitation of generated single bubbles. A synchronous ultrafast photomicrographic system simultaneously records the dynamics of single acoustic cavitation bubbles (SACBs) and the cleaning process of the nearby surface in liquids with varying viscosities. Finally, we analysed the correlation between bubble dynamics and surface cleaning situations. The differences in the typical dynamic characteristics of the bubbles during collapse in liquids with varying viscosities reveal two main mechanisms underlying surface cleaning by acoustic cavitation, which are respective the Laplace pressure during the bubble's movement and liquid jets during bubble collapse. Our study provides a better physical understanding of the ultrasonic cleaning process based on acoustic cavitation, and will help to optimize and facilitate the applications of surface cleaning, especially for the cleaning of substrates with tightly attached dirt.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda