Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317068

RESUMEN

Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π-π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.


Asunto(s)
Antineoplásicos/síntesis química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Animales , Antineoplásicos/farmacología , Sitios de Unión , Células HCT116 , Proteínas HSP90 de Choque Térmico/química , Humanos , Isoxazoles/química , Células MCF-7 , Ratones , Unión Proteica , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad
2.
Tumour Biol ; 39(4): 1010428317698355, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28443462

RESUMEN

Heat shock protein 90 is induced in response to the cell stress. Its overexpression has been reported in many cancers with poor prognosis. It acts as a chaperone to the client proteins, especially the activated oncoproteins in malignancies to protect them from degradation. Heat shock protein 90 inhibition represented anti-cancer effects in many studies. Previous natural product-based compounds are limited by their association with target toxicities. BIIB021 is an orally available, fully synthetic novel small-molecule heat shock protein 90 inhibitor that has shown strong antitumor activities in a large number of preclinical models and is now under clinical investigation. This review will summarize its therapeutic effects and highlight the prospect of targeting heat shock protein 90 in the cancer therapy.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/uso terapéutico , Proteínas HSP90 de Choque Térmico/genética , Neoplasias/tratamiento farmacológico , Piridinas/uso terapéutico , Adenina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Ratones , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Pharmacol Res ; 99: 202-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26117427

RESUMEN

Despite recent advances in precision medicine, many molecular-based antineoplastic agents do not potentiate sustainable long term remissions, warranting the investigation of novel therapeutic strategies. Heat shock protein 90 (Hsp90) is a molecular chaperone that not only has oncogenic properties, but also has distinct expression profiles in malignant and normal cells, providing a rational strategy to attain preferential damage. Prior attempts to target Hsp90 with natural product-based compounds have been hampered by their associated off target toxicities, suggesting that novel, fully synthetic inhibitors may be required to achieve the specificity necessary for therapeutic efficacy. Therefore, this review highlights the antineoplastic potential of PU-H71 (8-[(6-iodo-1,3-benzodioxol-5-yl)sulfanyl]-9-[3-(propan-2-ylamino)propyl]purin-6-amine), a novel purine based analog that has shown efficacy in many preclinical models of malignancy, and is now under clinical examination. In addition, the review suggests potential concomitant therapeutic approaches that may be particularly beneficial to molecular-based, as well as traditional cytotoxic cancer chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzodioxoles/uso terapéutico , Carcinogénesis/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Purinas/uso terapéutico , Carcinogénesis/genética , Humanos
4.
Biochem Biophys Res Commun ; 452(4): 945-50, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25223594

RESUMEN

BIIB021 is a novel, orally available inhibitor of heat shock protein 90 (Hsp90) that is currently in phase I/II clinical trials. BIIB021 induces the apoptosis of various types of tumor cells in vitro and in vivo. The aim of this study is to investigate the effect of BIIB021 on the radiosensitivity of esophageal squamous cell carcinoma (ESCC). The results indicated that BIIB021 exhibited strong antitumor activity in ESCC cell lines, either as a single agent or in combination with radiation. BIIB021 significantly downregulated radioresistant proteins including EGFR, Akt, Raf-1 of ESCC cell lines, increased apoptotic cells and enhanced G2 arrest that is more radiosensitive cell cycle phase. These results suggest that this synthetic Hsp90 inhibitor simultaneously affects multiple pathways involved in tumor development and progression in the ESCC setting and may represent a better strategy for the treatment of ESCC patients, either as a monotherapy or a radiosensitizer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Adenina/análogos & derivados , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Humanos , Piridinas , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5167-5177, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38240781

RESUMEN

Bladder cancer is a type of urologic malignancy that exhibits significant morbidity, mortality, and treatment costs. Inhibition of heat shock protein 90 (HSP90) activity has been a promising pharmacological strategy for blocking of bladder cancer pathogenesis. BIIB021 is a next-generation HSP90 inhibitor which interrupts ATP hydrolysis process of HSP90 and inhibits the stabilization and correct folding of client proteins. In current study, we aimed to investigate the molecular mechanism of the anticancer activity of BIIB021 in human bladder cancer T24 cells. Our results revealed that nanomolar concentration of BIIB021 decreased viability of T24 cell. BIIB021 downregulated HSP90 expression in T24 cells and inhibited the refolding activity of luciferase in the presence of T24 cell lysate. PCR array data indicated a significant alteration in transcript levels of cancer-related genes involved in metastases, apoptotic cell death, cell cycle, cellular senescence, DNA damage and repair mechanisms, epithelial-to-mesenchymal transition, hypoxia, telomeres and telomerase, and cancer metabolism pathways in T24 cells. All findings hypothesize that BIIB021 could exhibit as effective HSP90 inhibitor in the future for treatment of bladder cancer patients.


Asunto(s)
Antineoplásicos , Proteínas HSP90 de Choque Térmico , Neoplasias de la Vejiga Urinaria , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1005-1010, 2022 Aug.
Artículo en Zh | MEDLINE | ID: mdl-35981354

RESUMEN

OBJECTIVE: To explore the combined pro-apoptosis effect of HSP90 inhibitor BIIB021 and chloroquine (CQ) in chronic myeloid leukemia (CML) cells bearing T315I mutation and its mechanism. METHODS: The p210-T315I cells were divided into 4 groups by different treatment: control, BIIB021, CQ, and BIIB021 + CQ. After treated with BIIB021 or/and CQ for 24 hours, Annexin V/PI binding assay was used to detect apoptosis rates of CML cells. DAPI staining was used to observe nuclear fragmentation, and Western blot was used to detect the expression of caspase 3, PARP (apoptosis related proteins) and p62, LC3-I/II (autophagy related proteins). P210-T315I cells were inoculated subcutaneously into mice and CML mouse models were established. The mice in treatment groups were injected with BIIB021 and/or CQ while mice in control group were treated with PBS and normal saline. The tumor volume of mice was measured every 4 days, and protein level of cleaved-caspase 3 and LC3-II in tumor tissue were detected by immunohistochemistry. RESULTS: The results showed that BIIB021 induced apoptosis of CML cells in a dose-dependent manner ( r=0.91). CQ could enhance the apoptosis-inducing effect of BIIB021. Flow cytometry analysis results showed that the apoptosis rate of p210-T315I cells in combination group was higher than that in BIIB021 or CQ only group (P<0.05). DAPI staining showed nuclear fragmentation in combination group could be observed more obviously. Western blot analysis showed that BIIB021 could induce LC3-I to convert to LC3-II and decrease p62 protein levels (P<0.05). Moreover, the combination group had higher expression of LC3-II, p62 (P<0.05), activated PARP and activated caspase 3 than BIIB021 only group (P<0.05). Besides, experiment in vivo showed the mean tumor volume in co-treatment group was lower than that in single drug group (P<0.01). Immunohistochemistry of tumor tissue also showed the protein level of cleaved-caspase 3 and LC3-II in combined group was higher than that in BIIB021 only group. CONCLUSION: HSP90 inhibitor BIIB021 induced significant apoptosis of CML cells bearing T315I both in vivo and in vitro. CQ can enhance this effect probably by autophagy inhibition.


Asunto(s)
Cloroquina , Leucemia Mielógena Crónica BCR-ABL Positiva , Adenina/análogos & derivados , Animales , Apoptosis , Autofagia , Caspasa 3/metabolismo , Línea Celular Tumoral , Cloroquina/farmacología , Cloroquina/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Ratones , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Piridinas
7.
Anticancer Res ; 40(11): 6137-6150, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33109551

RESUMEN

BACKGROUND/AIM: Heat shock protein 90 (HSP90) controls maturation of oncogenic client proteins of cancer cells, and thus we studied the effect of HSP 90 inhibitors on cell survival and survival-related mediators in thyroid carcinoma cells. MATERIALS AND METHODS: Human TPC-1 and SW1736 thyroid carcinoma cells were utilized. Cell viability, cytotoxic activity and apoptosis were estimated using CCK-8 assay, cytotoxicity assay and FACS analysis, respectively. RESULTS: AUY922, BIIB021 and SNX5422 decreased cell viability, and increased cytotoxic activity and the proportion of apoptotic cells. The protein levels of cleaved PARP, cleaved caspase-3, Bax and Bim were elevated, and Bcl2 protein levels were reduced. Knockdown of Bax did not change cell viability, cytotoxic activity, the proportion of apoptotic cells and cleaved caspase-3 protein levels. Meanwhile, knockdown of Bim enhanced cell viability, and diminished cytotoxic activity, the proportion of apoptotic cells and cleaved caspase-3 protein levels. AUY922, BIIB021 and SNX5422 increased the protein levels of phospho-AMPK, and decreased those of phospho-ERK1/2, and total and phospho-AKT. CONCLUSION: AUY922, BIIB021 and SNX5422 induce cytotoxicity by modulating Bim and ERK1/2, AKT and AMPK signaling in thyroid carcinoma cells.


Asunto(s)
Adenina/análogos & derivados , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/metabolismo , Benzamidas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Indazoles/farmacología , Isoxazoles/farmacología , Piridinas/farmacología , Resorcinoles/farmacología , Neoplasias de la Tiroides/patología , Adenina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicina , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias de la Tiroides/enzimología
8.
Biomed Pharmacother ; 83: 22-32, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27470546

RESUMEN

The effec.t of BIIB021, a novel heat shock protein 90 (hsp90) inhibitor, on survival of thyroid carcinoma cells has not been evaluated. In this study, the impact of BIIB021 alone or in combination with the histone acetyltransferase inhibitor triptolide on survival of thyroid carcinoma cells was identified. In 8505C and TPC-1 thyroid carcinoma cells, BIIB021 caused cell death in conjunction with alterations in expression of hsp90 client proteins. Cotreatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, decreased cell viability, and increased the percentage of dead cells and cytotoxic activity. All of the combination index values were lower than 1.0, suggesting synergistic activity of BIIB021 with triptolide in induction of cytotoxicity. In treatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, the protein levels of total and phospho-p53, and cleaved caspase-3 were elevated, while those of total Akt, phospho-mTOR, phospho-4EBP1, phospho-S6K, phospho-NF-κB, survivin, X-linked inhibitor of apoptosis protein (xIAP), cellular inhibitor of apoptosis protein (cIAP) and acetyl. histone H4 were reduced. These results suggest that BIIB021 has a cytotoxic activity accompanied by regulation of hsp90 client proteins in thyroid carcinoma cells. Moreover, the synergism between BIIB021 and triptolide in induction of cytotoxicity is associated with the inhibition of PI3K/Akt/mTOR and NF-κB signal pathways, the underexpression of survivin and the activation of DNA damage response in thyroid carcinoma cells.


Asunto(s)
Adenina/análogos & derivados , Apoptosis/efectos de los fármacos , Diterpenos/farmacología , FN-kappa B/metabolismo , Fenantrenos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Tiroides/patología , Adenina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Sinergismo Farmacológico , Compuestos Epoxi/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Survivin , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Tiroides/metabolismo
9.
Neuroscience ; 327: 20-31, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058144

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract in ataxin-1 (ATXN1). The pathological hallmarks of SCA1 are the loss of cerebellar Purkinje cells and neurons in the brainstem and the presence of nuclear aggregates containing the polyQ-expanded ATXN1 protein. Heat shock protein 90 (Hsp90) inhibitors have been shown to reduce polyQ-induced toxicity. This study was designed to examine the therapeutic effects of BIIB021, a purine-scaffold Hsp90 inhibitor, on the protein homeostasis of polyQ-expanded mutant ATXN1 in a cell culture model of SCA1. Our results demonstrated that BIIB021 activated heat shock factor 1 (HSF1) and suppressed the abnormal accumulation of ATXN1 and its toxicity. The pharmacological degradation of mutant ATXN1 via activated HSF1 was dependent on both the proteasome and autophagy systems. These findings indicate that HSF1 is a key molecule in the regulation of the protein homeostasis of the polyQ-expanded mutant ATXN1 and that Hsp90 has potential as a novel therapeutic target in patients with SCA1.


Asunto(s)
Adenina/análogos & derivados , Ataxina-1/metabolismo , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Piridinas/farmacología , Factores de Transcripción/metabolismo , Adenina/farmacología , Ataxina-1/genética , Tronco Encefálico/efectos de los fármacos , Cerebelo/efectos de los fármacos , Factores de Transcripción del Choque Térmico , Homeostasis/fisiología , Calor , Humanos , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología
10.
Front Microbiol ; 6: 280, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25914683

RESUMEN

Epstein-Barr virus (EBV), which infects not only B cells but also T and natural killer (NK) cells, is associated with a variety of lymphoid malignancies. Because EBV-associated T and NK cell lymphomas are refractory and resistant to conventional chemotherapy, there is a continuing need for new effective therapies. EBV-encoded "latent membrane protein 1" (LMP1) is a major oncogene that activates nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and phosphatidylinositol 3-kinase signaling pathways, thus promoting cell growth and inhibiting apoptosis. Recently, we screened a library of small-molecule inhibitors and isolated heat shock protein 90 (Hsp90) inhibitors as candidate suppressors of LMP1 expression. In this study, we evaluated the effects of BIIB021, a synthetic Hsp90 inhibitor, against EBV-positive and -negative T and NK lymphoma cell lines. BIIB021 decreased the expression of LMP1 and its downstream signaling proteins, NF-κB, JNK, and Akt, in EBV-positive cell lines. Treatment with BIIB021 suppressed proliferation in multiple cell lines, although there was no difference between the EBV-positive and -negative lines. BIIB021 also induced apoptosis and arrested the cell cycle at G1 or G2. Further, it down-regulated the protein levels of CDK1, CDK2, and cyclin D3. Finally, we evaluated the in vivo effects of the drug; BIIB021 inhibited the growth of EBV-positive NK cell lymphomas in a murine xenograft model. These results suggest that BIIB021 has suppressive effects against T and NK lymphoma cells through the induction of apoptosis or a cell cycle arrest. Moreover, BIIB021 might help to suppress EBV-positive T or NK cell lymphomas via the down-regulation of LMP1 expression.

11.
Exp Ther Med ; 7(6): 1539-1544, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24926340

RESUMEN

The novel orally available inhibitor of the molecular chaperone heat shock protein 90 (Hsp90), BIIB021, induces the apoptosis of various types of tumor cell in vitro and in vivo. However, the effects and mechanisms of this agent on myelodysplastic syndrome (MDS) cell lines remain unknown. The aim of this study was to investigate the effects of BIIB021 on SKM-1 cells (a MDS cell line) and examine its mechanisms of action. The results showed that BIIB021 inhibited the growth of SKM-1 cells effectively in vitro. The treatment of SKM-1 cells with BIIB021 resulted in the inhibition of cell growth through G0/G1-phase cell cycle arrest and induced apoptosis by activating caspase-3, -8 and -9. Furthermore, this study also demonstrated that the mechanisms of apoptosis in SKM-1 cells were associated with the suppression of the phosphatidylinositide 3-kinase/Akt and nuclear factor-κB signaling pathways. Therefore, the findings indicate a novel approach for the treatment of high-risk MDS.

12.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1683-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25484226

RESUMEN

Hsp90 is a molecular chaperone responsible for the assembly and regulation of many cellular client proteins. In particular, Trap1, a mitochondrial Hsp90 homologue, plays a pivotal role in maintaining mitochondrial integrity, protecting against apoptosis in cancer cells. The N (N-terminal)-M (middle) domain of human Trap1 was crystallized in complex with Hsp90 inhibitors (PU-H71 and BIIB-021) by the hanging-drop vapour-diffusion method at pH 6.5 and 293 K using 15% PEG 8K as a precipitant. Diffraction data were collected from crystals of the Trap1-PU-H71 (2.7 Å) and Trap1-BIIB-021 (3.1 Å) complexes to high resolution at a synchrotron-radiation source. Preliminary X-ray diffraction analysis revealed that both crystals belonged to space group P41212 or P43212, with unit-cell parameters a = b = 69.2, c = 252.5 Å, and contained one molecule per asymmetric unit according to Matthews coefficient calculations.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Secuencia de Bases , Cristalización , Cristalografía por Rayos X , Cartilla de ADN , Proteínas HSP90 de Choque Térmico/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda