Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Saudi Pharm J ; 29(6): 539-551, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34194261

RESUMEN

All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.

2.
Rep Pract Oncol Radiother ; 25(3): 422-427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372882

RESUMEN

Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.

3.
Br J Nutr ; 121(1): 55-62, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360768

RESUMEN

The polyphenolic extract (PE) from extra virgin olive oil (EVOO) has been shown to possess important anti-inflammatory and joint protective properties in murine models of rheumatoid arthritis (RA). This study was designed to evaluate the effects of PE on IL-1ß-activated human synovial fibroblasts SW982 cell line. PE from EVOO treatment inhibited IL-1ß-induced matrix metalloproteases (P<0·001), TNF-α and IL-6 production (P<0·001). Similarly, IL-1ß-induced cyclo-oxygenase-2 and microsomal PGE synthase-1 up-regulations were down-regulated by PE (P<0·001). Moreover, IL-1ß-induced mitogen-activated protein kinase (MAPK) phosphorylation and NF-κB activation were ameliorated by PE (P<0·001). These results suggest that PE from EVOO reduces the production of proinflammatory mediators in human synovial fibroblasts; particularly, these protective effects could be related to the inhibition of MAPK and NF-κB signalling pathways. Taken together, PE from EVOO probably could provide an attractive complement in management of diseases associated with over-activation of synovial fibroblasts, such as RA.


Asunto(s)
Inflamación/tratamiento farmacológico , Interleucina-1beta/farmacología , Aceite de Oliva/química , Polifenoles/farmacología , Membrana Sinovial/efectos de los fármacos , Antiinflamatorios , Artritis Reumatoide/tratamiento farmacológico , Línea Celular , Ciclooxigenasa 2/genética , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Inflamación/prevención & control , Interleucina-6/antagonistas & inhibidores , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Prostaglandina-E Sintasas/genética , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/citología , Sinovitis/prevención & control , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
4.
Nutr Res Rev ; 31(1): 131-151, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679994

RESUMEN

Emerging literature suggests that diet constituents may play a modulatory role in chronic pain (CP) through management of inflammation/oxidative stress, resulting in attenuation of pain. We performed a narrative review to evaluate the existing evidence regarding the optimum diet for the management of CP, and we built a food pyramid on this topic. The present review also describes the activities of various natural compounds contained in foods (i.e. phenolic compounds in extra-virgin olive oil (EVO)) listed on our pyramid, which have comparable effects to drug management therapy. This review included 172 eligible studies. The pyramid shows that carbohydrates with low glycaemic index should be consumed every day (three portions), together with fruits and vegetables (five portions), yogurt (125 ml), red wine (125 ml) and EVO; weekly: legumes and fish (four portions); white meat, eggs and fresh cheese (two portions); red or processed meats (once per week); sweets can be consumed occasionally. The food amounts are estimates based on nutritional and practical considerations. At the top of the pyramid there is a pennant: it means that CP subjects may need a specific customised supplementation (vitamin B12, vitamin D, n-3 fatty acids, fibre). The food pyramid proposal will serve to guide dietary intake with to the intent of alleviating pain in CP patients. Moreover, a targeted diet can also help to solve problems related to the drugs used to combat CP, i.e. constipation. However, this paper would be an early hypothetical proposal due to the limitations of the studies.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Dolor Crónico/dietoterapia , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Índice Glucémico , Humanos , Aceite de Oliva/uso terapéutico , Fenoles/uso terapéutico
5.
Br J Nutr ; 118(6): 411-422, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28980889

RESUMEN

Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPAR α, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPAR α and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.


Asunto(s)
Antioxidantes/metabolismo , Ácido Araquidónico/administración & dosificación , Composición Corporal , Carpas/fisiología , Ácido Eicosapentaenoico/administración & dosificación , Metabolismo de los Lípidos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Alimentación Animal/análisis , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta/veterinaria , Glutatión Peroxidasa/sangre , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Lipoproteína Lipasa/sangre , Malondialdehído/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/sangre
6.
Nutr Res Rev ; 29(1): 102-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27172872

RESUMEN

Considerable debate exists regarding the potential antineoplastic effect of dietary long-chain n-3 PUFA contained in fatty fishes. Since the majority of published data has proven that their intake does not induce toxic or carcinogenic effects in humans, their possible preventive use against cancer has been suggested. On the other hand, it is unlikely that they could be effective in cancer patients as a single therapy. Nevertheless, a considerable effort has been put forth in recent years to evaluate the hypothesis that n-3 PUFA might improve the antineoplastic efficiency of currently used anticancer agents. The rationale for this therapeutic combinatory strategy is trying to increase cancer sensitivity to conventional therapies. This could allow the use of lower drug/radiation doses and, thereby, a reduction in the detrimental health effects associated with these treatments. We will here critically examine the studies that have investigated this possibility, by focusing particularly on the biological and molecular mechanisms underlying the antineoplastic effect of these combined treatments. A possible use of n-3 PUFA in combination with the innovative single-targeted anti-cancer therapies, that often are not completely devoid of dangerous side-effects, is also suggested.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias/dietoterapia , Antineoplásicos , Quimioradioterapia Adyuvante , Terapia Combinada , Dieta , Grasas de la Dieta , Humanos , Alimentos Marinos
7.
Nutr Res Rev ; 29(1): 1-16, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26809946

RESUMEN

Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea) and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit asthma.


Asunto(s)
Asma , Ácidos Grasos Omega-3 , Suplementos Dietéticos , Eicosanoides , Humanos , Inflamación
8.
Ind Crops Prod ; 89: 543-549, 2016 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32288271

RESUMEN

Lonicera japonica Thunberg (LJ) has long been used as an antipyretic, anti-inflammatory and anti-infectious agent in East Asia. The subspecies L. japonica Thunb. var. sempervillosa Hayata (LJv) is a variant that mainly grows in Taiwan. This study examined the antioxidant and anti-inflammatory activities of the extracts from the flower buds of these two species. The extracts were obtained by three extraction methods: water extraction, ethanol extraction, and supercritical-CO2 fluid extraction (SFE). The antioxidant activities of dry LJ (dLJ) extracts were superior to those of LJv extracts. Water extracts possessed higher activities than that prepared by ethanol or SFE. The total polyphenols content, total flavonoids content, and the amount of chlorogenic acid and luteolin-7-O-glucoside were all higher in the water extracts compared to the other two. The SFE extracts of these two species all exhibited excellent anti-inflammatory activities. Although the water and ethanol extracts of dLJ extracts had higher anti-inflammatory activity than that of LJv extracts, the SFE extracts prepared from fresh LJv flower buds (fLJv) exhibited the highest activity among all extracts. The SFE effectively isolates the bioactive components of L. japonica and can obtain the L. japonica extracts with high anti-inflammatory activity.

9.
J Biochem ; 173(4): 293-305, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36539331

RESUMEN

12(S)-hydroxyheptadecatrienoic acid (12-HHT) is a bioactive fatty acid synthesized from arachidonic acid via the cyclooxygenase pathway and serves as an endogenous ligand for the low-affinity leukotriene B4 receptor 2 (BLT2). Although the 12-HHT/BLT2 axis contributes to the maintenance of epithelial homeostasis, 12-HHT metabolism under physiological conditions is unclear. In this study, 12-keto-heptadecatrienoic acid (12-KHT) and 10,11-dihydro-12-KHT (10,11dh-12-KHT) were detected as 12-HHT metabolites in the human megakaryocytic cell line MEG01s. We found that 12-KHT and 10,11dh-12-KHT are produced from 12-HHT by 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and prostaglandin reductase 1 (PTGR1), key enzymes in the degradation of prostaglandins, respectively. The 15-PGDH inhibitor SW033291 completely suppressed the production of 12-KHT and 10,11dh-12-KHT in MEG01s cells, resulting in a 9-fold accumulation of 12-HHT. 12-KHT and 10,11dh-12-KHT were produced in mouse skin wounds, and the levels were significantly suppressed by SW033291. Surprisingly, the agonistic activities of 12-KHT and 10,11dh-12-KHT on BLT2 were comparable to that of 12-HHT. Taken together, 12-HHT is metabolized into 12-KHT by 15-PGDH, and then 10,11dh-12-KHT by PTGR1 without losing the agonistic activity.


Asunto(s)
Ácidos Grasos Insaturados , Receptores de Leucotrieno B4 , Ratones , Humanos , Animales , Receptores de Leucotrieno B4/metabolismo , Ligandos , Ácidos Grasos Insaturados/metabolismo , Leucotrieno B4/metabolismo
10.
Neurobiol Pain ; 11: 100091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35518782

RESUMEN

Migraine results in an enormous burden on individuals and societies due to its high prevalence, significant disability, and considerable economic costs. Current treatment options for migraine remain inadequate, and the development of novel therapies is severely hindered by the incomplete understanding of the mechanisms responsible for the pain. The sensory innervation of the cranial meninges is now considered a key player in migraine headache genesis. Recent studies have significantly advanced our understanding of some of the processes that drive meningeal nociceptive neurons, which may be targeted therapeutically to abort or prevent migraine pain. In this review we will summarize our current understanding of the mechanisms that contribute to the genesis of the headache in one migraine subtype - migraine with aura. We will focus on animal studies that address the notion that cortical spreading depression is a critical process that drives meningeal nociception in migraine with aura, and discuss recent insights into some of the proposed underlying mechanisms.

11.
JHEP Rep ; 4(2): 100412, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35036886

RESUMEN

BACKGROUND & AIMS: Intrahepatic vascular resistance is increased in early non-alcoholic fatty liver disease (NAFLD), potentially leading to tissue hypoxia and triggering disease progression. Hepatic vascular hyperreactivity to vasoconstrictors has been identified as an underlying mechanism. This study investigates vasoconstrictive agonism and antagonism in 2 models of early NAFLD and in non-alcoholic steatohepatitis (NASH). METHODS: The effects of endothelin-1 (ET-1), angiotensin II (ATII) and thromboxane A2 (TxA2) agonism and antagonism were studied by in situ ex vivo liver perfusion and preventive/therapeutic treatment experiments in a methionine-choline-deficient diet model of steatosis. Furthermore, important results were validated in Zucker fatty rats after 4 or 8 weeks of high-fat high-fructose diet feeding. In vivo systemic and portal pressures, ex vivo transhepatic pressure gradients (THPG) and transaminase levels were measured. Liver tissue was harvested for structural and mRNA analysis. RESULTS: The THPG and consequent portal pressure were significantly increased in both models of steatosis and in NASH. ET-1, ATII and TxA2 increased the THPG even further. Bosentan (ET-1 receptor antagonist), valsartan (ATII receptor blocker) and celecoxib (COX-2 inhibitor) attenuated or even normalised the increased THPG in steatosis. Simultaneously, bosentan and valsartan treatment improved transaminase levels. Moreover, bosentan was able to mitigate the degree of steatosis and restored the disrupted microvascular structure. Finally, beneficial vascular effects of bosentan endured in NASH. CONCLUSIONS: Antagonism of vasoconstrictive mediators improves intrahepatic vascular function. Both ET-1 and ATII antagonists showed additional benefit and bosentan even mitigated steatosis and structural liver damage. In conclusion, vasoconstrictive antagonism is a potentially promising therapeutic option for the treatment of early NAFLD. LAY SUMMARY: In non-alcoholic fatty liver disease (NAFLD), hepatic blood flow is impaired and the blood pressure in the liver blood vessels is increased as a result of an increased response of the liver vasculature to vasoconstrictors. Using drugs to block the constriction of the intrahepatic vasculature, the resistance of the liver blood vessels decreases and the increased portal pressure is reduced. Moreover, blocking the vasoconstrictive endothelin-1 pathway restored parenchymal architecture and reduced disease severity.

12.
J Tradit Complement Med ; 11(6): 563-569, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765520

RESUMEN

BACKGROUND AND AIM: Kaempferia galanga, also known as aromatic Ginger (kencur) in Indonesia, has been widely explored and shows potential as an anti-inflammatory agent. However, there has been limited research to show a possible mechanism by which aromatic ginger inhibits lipoxygenase (LOX). Therefore, this study aims to determine the anti-inflammatory activity of aromatic ginger by comparing extract, fractions, and ethyl-p-methoxycinnamate (EPMC) isolate, as well as possible LOX inhibition activity, by reducing the production of leukotriene B4 (LTB4). EXPERIMENTAL PROCEDURE: Two animal models were used, namely, the carrageenan-induced granuloma air pouch model and the pleurisy model. The test substance was administered 1 h before carrageenan induction, which was performed orally for each animal model. The number of leukocytes and the malondialdehyde (MDA) levels, leukotriene B4 (LTB4) levels, and histology were observed. GC-MS and LC-MS were used for analysis of the chemical compounds in the test samples. RESULTS AND CONCLUSION: The results of GC-MS analysis showed that aromatic ginger rhizome extract and fractions were dominated by ethyl-trans-p-methoxycinnamate, with the highest level found in the extract. K. galanga showed significant anti-inflammatory activity compared to the control (p < 0.01) in both the granuloma air pouch and pleurisy models. The results of examining the LTB4 concentration showed comparable activity between K. galanga extract, fractions and EMPC isolate, these results were not better than those of zileuton. Overall, this study shows that aromatic ginger extract, fractions and EPMC isolate have anti-inflammatory properties and have the potential to inhibit LOX, thereby reducing LTB4 levels.

13.
JACC Basic Transl Sci ; 6(12): 1007-1020, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024507

RESUMEN

Aortic stenosis (AS) is the most common heart valve disease requiring surgery in developed countries, with a rising global burden associated with aging populations. The predominant cause of AS is believed to be driven by calcific degeneration of the aortic valve and a growing body of evidence suggests that platelets play a major role in this disease pathophysiology. Furthermore, platelets are a player in bioprosthetic valve dysfunction caused by their role in leaflet thrombosis and thickening. This review presents the molecular function of platelets in the context of recent and rapidly evolving understanding the role of platelets in AS, both of the native aortic valve and bioprosthetic valves, where there remain concerns about the effects of subclinical leaflet thrombosis on long-term prosthesis durability. This review also presents the role of antiplatelet and anticoagulation therapies on modulating the impact of platelets on native and bioprosthetic aortic valves, highlighting the need for further studies to determine whether these therapies are protective and may increase the life span of surgical and transcatheter aortic valve implants. By linking molecular mechanisms through which platelets drive disease of native and bioprosthetic aortic valves with studies evaluating the clinical impact of antiplatelet and antithrombotic therapies, we aim to bridge the gaps between our basic science understanding of platelet biology and their role in patients with AS and ensuing preventive and therapeutic implications.

14.
Toxicol Rep ; 8: 349-358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665132

RESUMEN

Particulate matter (PM) contributes to air pollution and primarily originates from unregulated industrial emissions and seasonal natural dust emissions. Fucoxanthin (Fx) is a marine natural pigment from brown macroalgae that has been shown to have various beneficial effects on health. However, the effects of Fx on PM-induced toxicities in cells and animals have not been assessed. In this study, we investigated the anti-inflammatory potential of the Fx-rich fraction (FxRF) of Sargassum fusiformis against PM-mediated inflammatory responses. The FxRF composition was analyzed by rapid-resolution liquid chromatography mass spectrometry. Fx and other main pigments were identified. FxRF attenuated the production of inflammatory components, including prostaglandin E2 (PGE2), cyclooxygenase-2, interleukin (IL)-1ß, and IL-6 from PM-exposed HaCaT keratinocytes. PM exposure also reduced the levels of nitric oxide (NO), tumor necrosis factor-α, inducible nitric oxide synthase (iNOS), and PGE2 in PM-exposed RAW264.7 macrophages. Additionally, the culture medium from PM-exposed HaCaT cells induced upregulation of NO, iNOS, PGE2, and pro-inflammatory cytokines in RAW264.7 macrophages. FxRF also significantly decreased the expression levels of factors involved in inflammatory responses, such as NO, reactive oxygen species, and cell death, in PM-exposed zebrafish embryos. These results demonstrated the potential protective effects of FxRF against PM-induced inflammation both in vitro and in a zebrafish model.

15.
JHEP Rep ; 3(6): 100332, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825153

RESUMEN

BACKGROUND & AIMS: Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at improving monocyte dysfunction. METHODS: Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosynthetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using polychromatic flow cytometry and cytokine production. RESULTS: We show that hepatic production of PGE2 via the cyclo-oxygenase 1-microsomal PGE synthase 1 pathway, and circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute decompensation, as assessed by Human Leukocyte Antigen (HLA)-DR isotype expression and tumour necrosis factor alpha and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor. CONCLUSIONS: PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission. LAY SUMMARY: Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high infection rates that lead to high mortality rates. A white blood cell subset, monocytes, function poorly in these patients, which is a key factor underlying their sensitivity to infection. We show that monocyte dysfunction in decompensated cirrhosis is mediated by a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunction worsens when patients are hospitalised with complications of cirrhosis compared with those in the outpatients setting, which supports the EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation.

16.
Phytomed Plus ; 1(4): 100058, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35403084

RESUMEN

Background: The corona virus disease 2019 (COVID-19) pandemic has highlighted the fact that there are few effective antiviral agents for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although the very recent development of vaccines is an extremely important breakthrough, it remains unclear how long-lived such vaccines will be. The development of new agents therefore remains an important goal. Purpose: Given the multifaceted pathology of COVID-19, a combinatorial formulation may provide an effective treatment. BEN815, a natural nutraceutical composed of extracts from guava leaves (Psidium guajava), green tea leaves (Camellia sinensis), and rose petals (Rosa hybrida), had previously shown to have a therapeutic effect on allergic rhinitis. We investigated whether BEN815 possesses anti-inflammatory, antiviral and antioxidant activities, since the combination of these effects could be useful for the treatment of COVID-19. Study design: We examined the anti-inflammatory effects of BEN815 and its principal active components quercetin and epigallocatechin gallate (EGCG) in lipopolysaccharide (LPS)-induced RAW264.7 cells and in an LPS-challenged mouse model of endotoxemia. We also assessed the antioxidant activity, and antiviral effect of BEN815, quercetin, and EGCG in SARS-CoV-2-infected Vero cells. Methods: The principal active ingredients in BEN815 were determined and quantified using HPLC. Changes in the levels of LPS-induced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by ELISA. Changes in the expression levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were analyzed using western blotting. Antioxidant assay was performed using DPPH and ABTS assay. SARS-CoV-2 replication was measured by immunofluorescence staining. Results: BEN815 significantly suppressed the induction of IL-6 and TNF-α as well as COX-2 and iNOS in LPS-induced RAW264.7 cells. In addition, BEN815 protected against LPS-challenged endotoxic shock in mice. Two major constituents of BEN815, quercetin and EGCG, reduced the induction of IL-6 and TNF-α as well as COX-2 and iNOS synthase in LPS-induced RAW264.7 cells. BEN815, quercetin, and EGCG were also found to have antioxidant effects. Importantly, BEN815 and EGCG could inhibit SARS-CoV-2 replications in Vero cells. Conclusion: BEN815 is an anti-inflammatory, antiviral, and antioxidant natural agent that can be used to prevent and improve inflammation-related diseases, COVID-19.

17.
Saudi J Biol Sci ; 28(8): 4311-4317, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34354413

RESUMEN

Asthma as chronic airway disease has high prevalence in children and imbalance of Th1/Th2 is a critical mechanism in pathogenesis of the asthma. Baicalein as a cell protective and anti-inflammatory flavonoid may have anti-asthma effect. Therefore, for better using lung, baicalein was used in chitosan-nanoparticle as anti-asthma treatment. Baicalein was loaded and encapsulated in chitosan nanoparticle. The morphology, physical characters (particle size, zeta potential and FT-IR) were analyzed. Drug encapsulation and loading capacity, accumulative release-time were studied. After asthma model producing, the mice were treated with L-B-NP and E-B-NP. At least, MCh challenge test, Cytokines measurement and Lung Histopathology were done. Nanoparticles had average size 285 ± 25 nm with negative charge -2.5 mV. The L-B-NP decreased penh value and E-B-NP decreased inflammation. Both nanoparticles increased IL-12 and decreased IL-5. Also, L-B-NP decreased mucus secretion in bronchi. L-B-NP and E-B-NP control immune-allergo-inflammatory response of asthma. L-B-NP controlled AHR and E-B-NP controlled inflammation that can be used as controlling anti-asthma drug.

18.
Acta Pharm Sin B ; 11(6): 1629-1647, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221873

RESUMEN

Chronic inflammation results from excessive pro-inflammatory signaling and the failure to resolve the inflammatory reaction. Lipid mediators orchestrate both the initiation and resolution of inflammation. Switching from pro-inflammatory to pro-resolving lipid mediator biosynthesis is considered as efficient strategy to relieve chronic inflammation, though drug candidates exhibiting such features are unknown. Starting from a library of Vietnamese medical plant extracts, we identified isomers of the biflavanoid 8-methylsocotrin-4'-ol from Dracaena cambodiana, which limit inflammation by targeting 5-lipoxygenase and switching the lipid mediator profile from leukotrienes to specialized pro-resolving mediators (SPM). Elucidation of the absolute configurations of 8-methylsocotrin-4'-ol revealed the 2S,γS-isomer being most active, and molecular docking studies suggest that the compound binds to an allosteric site between the 5-lipoxygenase subdomains. We identified additional subordinate targets within lipid mediator biosynthesis, including microsomal prostaglandin E2 synthase-1. Leukotriene production is efficiently suppressed in activated human neutrophils, macrophages, and blood, while the induction of SPM biosynthesis is restricted to M2 macrophages. The shift from leukotrienes to SPM was also evident in mouse peritonitis in vivo and accompanied by a substantial decrease in immune cell infiltration. In summary, we disclose a promising drug candidate that combines potent 5-lipoxygenase inhibition with the favorable reprogramming of lipid mediator profiles.

19.
Toxicol Rep ; 8: 557-570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777702

RESUMEN

Diclofenac sodium salt (DSS) is a widely used nonsteroidal anti-inflammatory drug. The present study was performed under good laboratory practice (GLP) regulations to investigate the toxicity of DSS after 4 weeks of repeated intramuscular administration at doses of 0, 2, 10, or 20 mg/kg/day in 32 minipigs and to evaluate the DSS effect following a 2-week recovery period. Dose-related clinical signs and alterations of hematological or clinical chemistry parameters, organ weight, and macroscopic as well as histopathological findings in hepatic, renal, gastrointestinal, skin and injection sites were observed in both sexes' animals of the 10 or 20 mg/kg/day group. With the exception of the skin-related findings, most symptoms showed a tendency to resolve after the 2-week recovery period. The systemic exposure (AUClast) of DSS in plasma showed similar pattern to the increase rate of the dose and similar values between males and females except for the female 20 mg/kg dose group (56 %) on Day1. The systemic exposure showed a decreasing trend in the 10 or 20 mg/kg group after 4-week of repeated administration compared to Day1. The no-observed-adverse-effect level of DSS in this study was considered to be 2 mg/kg/day in both male and female minipigs.

20.
Saudi J Biol Sci ; 28(12): 6957-6962, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34866995

RESUMEN

Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied. After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf's eosinophil Counting, The levels of IL-4, -5, -13, -25, -33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done. BALf's eosinophils, the levels of IL-4, -5, -13, -25, -33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4. MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda