Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 185(3): 563-575.e11, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120664

RESUMEN

Metastatic progression is the main cause of death in cancer patients, whereas the underlying genomic mechanisms driving metastasis remain largely unknown. Here, we assembled MSK-MET, a pan-cancer cohort of over 25,000 patients with metastatic diseases. By analyzing genomic and clinical data from this cohort, we identified associations between genomic alterations and patterns of metastatic dissemination across 50 tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some tumor types, including prostate adenocarcinoma, lung adenocarcinoma, and HR+/HER2+ breast ductal carcinoma, but not in others, including colorectal cancer and high-grade serous ovarian cancer, where copy-number alteration patterns may be established early in tumor development. We also identified somatic alterations associated with metastatic burden and specific target organs. Our data offer a valuable resource for the investigation of the biological basis for metastatic spread and highlight the complex role of chromosomal instability in cancer progression.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Especificidad de Órganos/genética , Estudios Prospectivos
2.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442400

RESUMEN

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Asunto(s)
Epidemias , Genómica/métodos , Infección por el Virus Zika/epidemiología , Aedes/virología , Animales , Cuba/epidemiología , Humanos , Incidencia , Control de Mosquitos , Filogenia , ARN Viral/química , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Viaje , Indias Occidentales/epidemiología , Virus Zika/clasificación , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
3.
Mod Pathol ; 36(3): 100049, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788098

RESUMEN

The repair of DNA double-stranded breaks relies on the homologous recombination repair pathway and is critical to cell function. However, this pathway can be lost in some cancers such as breast, ovarian, endometrial, pancreatic, and prostate cancers. Cancer cells with homologous recombination deficiency (HRD) are sensitive to targeted inhibition of poly-ADP ribose polymerase (PARP), a key component of alternative backup DNA repair pathways. Identifying patients with cancer with HRD biomarkers allows the identification of patients likely to benefit from PARP inhibitor therapies. In this study, we describe the causes of HRD, the underlying molecular changes resulting from HRD that form the basis of different molecular HRD assays, and discuss the issues around their clinical use. This overview is directed toward practicing pathologists wishing to be informed of this new predictive biomarker, as PARP inhibitors are increasingly used in standard care settings.


Asunto(s)
Neoplasias Ováricas , Reparación del ADN por Recombinación , Femenino , Humanos , Neoplasias Ováricas/genética , Recombinación Homóloga , Patólogos , Reparación del ADN
4.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32940337

RESUMEN

Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.


Asunto(s)
Simulación por Computador , Antígenos HLA/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunogenética/métodos , Polimorfismo de Nucleótido Simple , Receptores KIR/genética , Alelos , Frecuencia de los Genes , Genotipo , Técnicas de Genotipaje/métodos , Haplotipos , Humanos , Fenotipo , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
5.
Gynecol Oncol ; 174: 262-272, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245486

RESUMEN

PURPOSE: Using next generation sequencing (NGS), The Cancer Genome Atlas (TCGA) found that endometrial carcinomas (ECs) fall under one of four molecular subtypes, and a POLE mutation status, mismatch repair (MMR) and p53 immunohistochemistry (IHC)-based surrogate has been developed. We sought to retrospectively classify and characterize a large series of unselected ECs that were prospectively subjected to clinical sequencing by utilizing clinical molecular and IHC data. EXPERIMENTAL DESIGN: All patients with EC with clinical tumor-normal MSK-IMPACT NGS from 2014 to 2020 (n = 2115) were classified by integrating molecular data (i.e., POLE mutation, TP53 mutation, MSIsensor score) and MMR and p53 IHC results. Survival analysis was performed for primary EC patients with upfront surgery at our institution. RESULTS: Utilizing our integrated approach, significantly more ECs were molecularly classified (1834/2115, 87%) as compared to the surrogate (1387/2115, 66%, p < 0.001), with an almost perfect agreement for classifiable cases (Kappa 0.962, 95% CI 0.949-0.975). Discrepancies were primarily due to TP53 mutations in p53-IHC-normal ECs. Of the 1834 ECs, most were of copy number (CN)-high molecular subtype (40%), followed by CN-low (32%), MSI-high (23%) and POLE (5%). Histologic and genomic variability was present amongst all molecular subtypes. Molecular classification was prognostic in early- and advanced-stage disease, including early-stage endometrioid EC. CONCLUSIONS: The integration of clinical NGS and IHC data allows for an algorithmic approach to molecularly classifying newly diagnosed EC, while overcoming issues of IHC-based genetic alteration detection. Such integrated approach will be important moving forward given the prognostic and potentially predictive information afforded by this classification.


Asunto(s)
Neoplasias Endometriales , Proteína p53 Supresora de Tumor , Femenino , Humanos , Proteína p53 Supresora de Tumor/genética , Inmunohistoquímica , Estudios Retrospectivos , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Pronóstico , Mutación
6.
Genes Chromosomes Cancer ; 61(6): 322-331, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35066956

RESUMEN

During the past decade, next-generation sequencing (NGS) technologies have become widely adopted in cancer research and clinical care. Common applications within the clinical setting include patient stratification into relevant molecular subtypes, identification of biomarkers of response and resistance to targeted and systemic therapies, assessment of heritable cancer risk based on known pathogenic variants, and longitudinal monitoring of treatment response. The need for efficient downstream processing and reliable interpretation of sequencing data has led to the development of novel algorithms and computational pipelines, as well as structured knowledge bases that link genomic alterations to currently available drugs and ongoing clinical trials. Cancer centers around the world use different types of targeted solid-tissue and blood based NGS assays to analyze the genomic and transcriptomic profile of patients as part of their routine clinical care. Recently, cross-institutional collaborations have led to the creation of large pooled datasets that can offer valuable insights into the genomics of rare cancers.


Asunto(s)
Neoplasias , Medicina de Precisión , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/patología , Medicina de Precisión/métodos
7.
Am J Hum Genet ; 105(3): 588-605, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447099

RESUMEN

The advancement of precision medicine requires new methods to coordinate and deliver genetic data from heterogeneous sources to physicians and patients. The eMERGE III Network enrolled >25,000 participants from biobank and prospective cohorts of predominantly healthy individuals for clinical genetic testing to determine clinically actionable findings. The network developed protocols linking together the 11 participant collection sites and 2 clinical genetic testing laboratories. DNA capture panels targeting 109 genes were used for testing of DNA and sample collection, data generation, interpretation, reporting, delivery, and storage were each harmonized. A compliant and secure network enabled ongoing review and reconciliation of clinical interpretations, while maintaining communication and data sharing between clinicians and investigators. A total of 202 individuals had positive diagnostic findings relevant to the indication for testing and 1,294 had additional/secondary findings of medical significance deemed to be returnable, establishing data return rates for other testing endeavors. This study accomplished integration of structured genomic results into multiple electronic health record (EHR) systems, setting the stage for clinical decision support to enable genomic medicine. Further, the established processes enable different sequencing sites to harmonize technical and interpretive aspects of sequencing tests, a critical achievement toward global standardization of genomic testing. The eMERGE protocols and tools are available for widespread dissemination.


Asunto(s)
Medicina de Precisión , Análisis de Secuencia de ADN/métodos , Pruebas Genéticas , Humanos , Estudios Prospectivos
8.
Am J Hum Genet ; 105(3): 526-533, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422818

RESUMEN

As clinical testing for Mendelian causes of colorectal cancer (CRC) is largely driven by recognition of family history and early age of onset, the rates of such findings among individuals with prevalent CRC not recognized to have these features is largely unknown. We evaluated actionable genomic findings in community-based participants ascertained by three phenotypes: (1) CRC, (2) one or more adenomatous colon polyps, and (3) control participants over age 59 years without CRC or colon polyps. These participants underwent sequencing for a panel of genes that included colorectal cancer/polyp (CRC/P)-associated and actionable incidental findings genes. Those with CRC had a 3.8% rate of positive results (pathogenic or likely pathogenic) for a CRC-associated gene variant, despite generally being older at CRC onset (mean 72 years). Those ascertained for polyps had a 0.8% positive rate and those with no CRC/P had a positive rate of 0.2%. Though incidental finding rates unrelated to colon cancer were similar for all groups, our positive rate for cardiovascular findings exceeds disease prevalence, suggesting that variant interpretation challenges or low penetrance in these genes. The rate of HFE c.845G>A (p.Cys282Tyr) homozygotes in the CRC group reinforces a previously reported, but relatively unexplored, association between hemochromatosis and CRC. These results in a general clinical population suggest that current testing strategies could be improved in order to better detect Mendelian CRC-associated conditions. These data also underscore the need for additional functional and familial evidence to clarify the pathogenicity and penetrance of variants deemed pathogenic or likely pathogenic, particularly among the actionable genes associated with cardiovascular disease.


Asunto(s)
Pólipos del Colon/genética , Neoplasias Colorrectales/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Am J Hum Genet ; 104(4): 701-708, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879638

RESUMEN

Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool, GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/threonine-protein kinase BRSK2. All probands have a speech delay, and most present with intellectual disability, motor delay, behavioral issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the remaining three missense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases, and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher than the estimated background-mutation rate (p = 2.46 × 10-6). We also find that exome sequencing provides lower coverage and appears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2's visibility in many clinical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental disease.


Asunto(s)
Discapacidades del Desarrollo/genética , Eliminación de Gen , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Trastorno Autístico/genética , Niño , Trastornos de la Conducta Infantil/genética , Preescolar , Exoma , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Heterocigoto , Humanos , Masculino , Trastornos de la Destreza Motora/genética , Mutación , Fenotipo , Secuenciación del Exoma , Adulto Joven
10.
Genet Med ; 24(3): 663-672, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906491

RESUMEN

PURPOSE: Despite the importance of exonic copy number variations (CNVs) in human genetic diseases, reliable next-generation sequencing-based methods for detecting them are unavailable. We developed an expandable and robust exonic CNV detection tool called consistent count region (CCR)-CNV. METHODS: In total, about 1000 samples of the truth set were used for validating CCR-CNV. We compared CCR-CNV performance with 2 well-known CNV tools. Finally, to overcome the limitations of CCR-CNV, we devised a combined approach. RESULTS: The mean sensitivity and specificity of CCR-CNV alone were above 95%, which was superior to that of other CNV tools, such as DECoN and Atlas-CNV. However, low covered region and positive predictive value and high false discovery rate act as obstacles to its use in clinical settings. The combined approach showed much improved performance than CCR-CNV alone. CONCLUSION: In this study, we present a novel diagnostic tool that allows the identification of exonic CNVs with high confidence using various reagents and clinical next-generation sequencing platforms. We validated this method using the largest multiple ligation-dependent probe amplification-confirmed data set, including sufficient copy normal control data. The approach, combined with existing CNV tools, allows the implementation of CCR-CNV in clinical settings.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Variaciones en el Número de Copia de ADN/genética , Exones/genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
11.
Hum Reprod ; 37(11): 2700-2708, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36149256

RESUMEN

STUDY QUESTION: Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER: Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY: Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION: We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION: Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS: The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S): M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Estudios Prospectivos , Pruebas Genéticas/métodos , Blastocisto , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33403770

RESUMEN

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Anomalías Múltiples/genética , Catarata/genética , Trastornos Congénitos de Glicosilación/genética , Proteínas de la Membrana/genética , Atrofia Muscular/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/ultraestructura , Anomalías Múltiples/patología , Adolescente , Catarata/complicaciones , Catarata/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/patología , Ojo/patología , Reconocimiento Facial , Facies , Femenino , Humanos , Proteínas de la Membrana/ultraestructura , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Mutación Missense/genética
13.
Health Care Anal ; 29(3): 249-261, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33389383

RESUMEN

In debates about genetic testing of children, as well as about disclosing unsolicited findings (UFs) of pediatric exome sequencing, respect for future autonomy should be regarded as a prima facie consideration for not taking steps that would entail denying the future adult the opportunity to decide for herself about what to know about her own genome. While the argument can be overridden when other, morally more weighty considerations are at stake, whether this is the case can only be determined in concrete cases. Importantly, when children grow into adolescents, respect for future autonomy will have to give way to respecting their emerging autonomy. When pediatric exome sequencing is done for complex conditions not involving developmental delay, respect for the child's future or emerging autonomy should be a primary consideration for those charged with deciding on behalf of the child. Building on what Emanuel and Emanuel have termed the 'deliberative model' of shared decision making, we argue that if parents fail to give these considerations their due, professionals should actively invite them to do so. Taking a directive stance may be needed in order to make sure that the future or emerging autonomy of the child are duly considered in the decision-making process, but also to help the parents and themselves to shape their respective roles as responsible care-givers.


Asunto(s)
Toma de Decisiones Conjunta , Exoma , Adolescente , Niño , Toma de Decisiones , Femenino , Pruebas Genéticas , Humanos , Masculino , Padres
14.
Cancer Sci ; 111(9): 3367-3378, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32619037

RESUMEN

Although next-generation sequencing-based panel testing is well practiced in the field of cancer medicine for the identification of target molecules in solid tumors, the clinical utility and clinical issues surrounding panel testing in hematological malignancies have yet to be fully evaluated. We conducted a multicenter prospective clinical sequencing study to verify the feasibility of a panel test for hematological tumors, including acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma, and diffuse large B-cell lymphoma. Out of 96 eligible patients, 79 patients (82%) showed potentially actionable findings, based on the clinical sequencing assays. We identified that genetic alterations with a strong clinical significance were found at a higher frequency in terms of diagnosis (n = 60; 63%) and prognosis (n = 61; 64%) than in terms of therapy (n = 8; 8%). Three patients who harbored a germline mutation in either DDX41 (n = 2) or BRCA2 (n = 1) were provided with genetic counseling. At 6 mo after sequencing, clinical actions based on the diagnostic (n = 5) or prognostic (n = 3) findings were reported, but no patients were enrolled in a clinical trial or received targeted therapies based on the sequencing results. These results suggest that panel testing for hematological malignancies would be feasible given the availability of useful diagnostic and prognostic information. This study is registered with the UMIN Clinical Trial Registry (UMIN000029879, multiple myeloma; UMIN000031343, adult acute myeloid leukemia; UMIN000033144, diffuse large B-cell lymphoma; and UMIN000034243, childhood leukemia).


Asunto(s)
Biomarcadores de Tumor , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Biología Computacional/métodos , Femenino , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Mutación de Línea Germinal , Neoplasias Hematológicas/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
15.
Cancer Sci ; 111(10): 3926-3937, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32772458

RESUMEN

Precision medicine is a promising strategy for cancer treatment. In this study, we developed an in-house clinical sequencing system to perform a comprehensive cancer genomic profiling test as a clinical examination and analyzed the utility of this system. Genomic DNA was extracted from tumor tissues and peripheral blood cells collected from 161 patients with different stages and types of cancer. A comprehensive targeted amplicon exome sequencing for 160 cancer-related genes was performed using next-generation sequencing (NGS). The sequencing data were analyzed using an original bioinformatics pipeline, and multiple cancer-specific gene alterations were identified. The success rate of our test was 99% (160/161), while re-biopsy was required for 24% (39/161) of the cases. Potentially actionable and actionable gene alterations were detected in 91% (145/160) and 46% (73/160) of the patients, respectively. The actionable gene alterations were frequently detected in PIK3CA (9%), ERBB2 (8%), and EGFR (4%). High tumor mutation burden (TMB) (≥10 mut/Mb) was observed in 12% (19/160) of the patients. The secondary findings in germline variants considered to be associated with hereditary tumors were detected in 9% (15/160) of the patients. Seventeen patients (11%, 17/160) were treated with genotype-matched therapeutic agents, and the response rate was 47% (8/17). The median turnaround time for physicians was 20 days, and the median survival time after the initial visit was 8.7 months. The results of the present study prove the feasibility of implementing in-house clinical sequencing as a promising laboratory examination technique for precision cancer medicine.


Asunto(s)
Biomarcadores de Tumor/genética , Genómica , Neoplasias/genética , Medicina de Precisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/genética , Receptores ErbB/genética , Femenino , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/epidemiología , Neoplasias/patología , Receptor ErbB-2/genética , Análisis de Supervivencia , Adulto Joven
16.
Genet Med ; 22(9): 1470-1477, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546831

RESUMEN

PURPOSE: Discovering an incidental finding (IF) or secondary finding (SF) is a potential result of genomic testing, but few data exist describing types and frequencies of SFs likely to appear in broader clinical populations. METHODS: The Electronic Medical Records and Genomics Network Phase III (eMERGE III) developed a CLIA-compliant sequencing panel of 109 genes and 1551 variants of clinical relevance or research interest and deployed this panel at ten clinical sites. We evaluated medically actionable SFs across 67 genes and 14 single-nucleotide variants (SNVs) in a diverse cohort of 21,915 participants drawn from a variety of settings (e.g., primary care, biobanks, specialty clinics). RESULTS: Correcting for testing indication, we found a 3.02% overall frequency of SFs; 2.54% from 59 genes the American College of Medical Genetics and Genomics recommends for SF return, and 0.48% in other genes, primarily HFE and PALB2. SFs associated with cancer susceptibility were most frequent (1.38%), followed by cardiovascular diseases (0.87%), and lipid disorders (0.50%). After removing HFE, the frequency of SFs and proportion of pathogenic versus likely pathogenic SFs did not differ in those self-identifying as White versus others. CONCLUSION: Here we present frequencies and types of medically actionable secondary findings to support informed decision making by patients, participants, and practitioners engaged in genomic medicine.


Asunto(s)
Pruebas Genéticas , Neoplasias , Exoma , Genoma Humano/genética , Genómica , Humanos , Hallazgos Incidentales , Neoplasias/genética
17.
Int J Mol Sci ; 21(10)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429412

RESUMEN

Cancer gene panel testing requires accurate detection of somatic mosaic mutations, as the test sample consists of a mixture of cancer cells and normal cells; each minor clone in the tumor also has different somatic mutations. Several studies have shown that the different types of software used for variant calling for next generation sequencing (NGS) can detect low-frequency somatic mutations. However, the accuracy of these somatic variant callers is unknown. We performed cancer gene panel testing in duplicate experiments using three different high-fidelity DNA polymerases in pre-capture amplification steps and analyzed by three different variant callers, Strelka2, Mutect2, and LoFreq. We selected six somatic variants that were detected in both experiments with more than two polymerases and by at least one variant caller. Among them, five single nucleotide variants were verified by CEL nuclease-mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) and Sanger sequencing. In silico analysis indicated that the FBXW7 and MAP3K1 missense mutations cause damage at the protein level. Comparing three somatic variant callers, we found that Strelka2 detected more variants than Mutect2 and LoFreq. We conclude that dual sequencing with Strelka2 analysis is useful for detection of accurate somatic mutations in cancer gene panel testing.


Asunto(s)
Genes Relacionados con las Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación/genética , Neoplasias/genética , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Frecuencia de los Genes/genética , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados
18.
Cancer Sci ; 110(4): 1464-1479, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30737998

RESUMEN

Tumor molecular profiling is becoming a standard of care for patients with cancer, but the optimal platform for cancer sequencing remains undetermined. We established a comprehensive assay, the Todai OncoPanel (TOP), which consists of DNA and RNA hybridization capture-based next-generation sequencing panels. A novel method for target enrichment, named the junction capture method, was developed for the RNA panel to accurately and cost-effectively detect 365 fusion genes as well as aberrantly spliced transcripts. The TOP RNA panel can also measure the expression profiles of an additional 109 genes. The TOP DNA panel was developed to detect single nucleotide variants and insertions/deletions for 464 genes, to calculate tumor mutation burden and microsatellite instability status, and to infer chromosomal copy number. Clinically relevant somatic mutations were identified in 32.2% (59/183) of patients by prospective TOP testing, signifying the clinical utility of TOP for providing personalized medicine to cancer patients.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias/genética , Transcriptoma , Empalme Alternativo , Biomarcadores de Tumor , Biopsia , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias/diagnóstico , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/genética , Secuenciación Completa del Genoma
19.
Cancer Sci ; 110(4): 1480-1490, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30742731

RESUMEN

Next-generation sequencing (NGS) of tumor tissue (ie, clinical sequencing) can guide clinical management by providing information about actionable gene aberrations that have diagnostic and therapeutic significance. Here, we undertook a hospital-based prospective study (TOP-GEAR project, 2nd stage) to investigate the feasibility and utility of NGS-based analysis of 114 cancer-associated genes (the NCC Oncopanel test). We examined 230 cases (comprising more than 30 tumor types) of advanced solid tumors, all of which were matched with nontumor samples. Gene profiling data were obtained for 187 cases (81.3%), 111 (59.4%) of which harbored actionable gene aberrations according to the Clinical Practice Guidelines for Next Generation Sequencing in Cancer Diagnosis and Treatment (Edition 1.0) issued by 3 major Japanese cancer-related societies. Twenty-five (13.3%) cases have since received molecular-targeted therapy according to their gene aberrations. These results indicate the utility of tumor-profiling multiplex gene panel testing in a clinical setting in Japan. This study is registered with UMIN Clinical Trials Registry (UMIN 000011141).


Asunto(s)
Biomarcadores de Tumor , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Neoplasias/genética , Adulto , Anciano , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mutación , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Pronóstico , Resultado del Tratamiento
20.
Trends Genet ; 32(9): 530-542, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478068

RESUMEN

The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/genética , Neoplasias/genética , Humanos , Neoplasias/patología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda