Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Semin Immunol ; 66: 101737, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857894

RESUMEN

Diet and the gut microbiota have a profound influence on physiology and health, however, mechanisms are still emerging. Here we outline several pathways that gut microbiota products, particularly short-chain fatty acids (SCFAs), use to maintain gut and immune homeostasis. Dietary fibre is fermented by the gut microbiota in the colon, and large quantities of SCFAs such as acetate, propionate, and butyrate are produced. Dietary fibre and SCFAs enhance epithelial integrity and thereby limit systemic endotoxemia. Moreover, SCFAs inhibit histone deacetylases (HDAC), and thereby affect gene transcription. SCFAs also bind to 'metabolite-sensing' G-protein coupled receptors (GPCRs) such as GPR43, which promotes immune homeostasis. The enormous amounts of SCFAs produced in the colon are sufficient to lower pH, which affects the function of proton sensors such as GPR65 expressed on the gut epithelium and immune cells. GPR65 is an anti-inflammatory Gαs-coupled receptor, which leads to the inhibition of inflammatory cytokines. The importance of GPR65 in inflammatory diseases is underscored by genetics associated with the missense variant I231L (rs3742704), which is associated with human inflammatory bowel disease, atopic dermatitis, and asthma. There is enormous scope to manipulate these pathways using specialized diets that release very high amounts of specific SCFAs in the gut, and we believe that therapies that rely on chemically modified foods is a promising approach. Such an approach includes high SCFA-producing diets, which we have shown to decrease numerous inflammatory western diseases in mouse models. These diets operate at many levels - increased gut integrity, changes to the gut microbiome, and promotion of immune homeostasis, which represents a new and highly promising way to prevent or treat human disease.


Asunto(s)
Acetatos , Ácidos Grasos Volátiles , Animales , Ratones , Humanos , Ácidos Grasos Volátiles/metabolismo , Butiratos/metabolismo , Fibras de la Dieta , Inmunomodulación
2.
Gut ; 73(5): 751-769, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331563

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Pulmón/metabolismo , Pulmón/patología , Neumonía/etiología , Inflamación/metabolismo , Carbohidratos/farmacología
3.
Gut ; 73(2): 298-310, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37793780

RESUMEN

OBJECTIVE: Animal studies suggest that prebiotic, plant-derived nutrients could improve homoeostatic and hedonic brain functions through improvements in microbiome-gut-brain communication. However, little is known if these results are applicable to humans. Therefore, we tested the effects of high-dosed prebiotic fibre on reward-related food decision-making in a randomised controlled within-subject cross-over study and assayed potential microbial and metabolic markers. DESIGN: 59 overweight young adults (19 females, 18-42 years, body mass index 25-30 kg/m2) underwent functional task MRI before and after 14 days of supplementary intake of 30 g/day of inulin (prebiotics) and equicaloric placebo, respectively. Short chain fatty acids (SCFA), gastrointestinal hormones, glucose/lipid and inflammatory markers were assayed in fasting blood. Gut microbiota and SCFA were measured in stool. RESULTS: Compared with placebo, participants showed decreased brain activation towards high-caloric wanted food stimuli in the ventral tegmental area and right orbitofrontal cortex after prebiotics (preregistered, family wise error-corrected p <0.05). While fasting blood levels remained largely unchanged, 16S-rRNA sequencing showed significant shifts in the microbiome towards increased occurrence of, among others, SCFA-producing Bifidobacteriaceae, and changes in >60 predicted functional signalling pathways after prebiotic intake. Changes in brain activation correlated with changes in Actinobacteria microbial abundance and associated activity previously linked with SCFA production, such as ABC transporter metabolism. CONCLUSIONS: In this proof-of-concept study, a prebiotic intervention attenuated reward-related brain activation during food decision-making, paralleled by shifts in gut microbiota. TRIAL REGISTRATION NUMBER: NCT03829189.


Asunto(s)
Sobrepeso , Prebióticos , Animales , Femenino , Adulto Joven , Humanos , Estudios Cruzados , Dieta , Inulina , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología
4.
Brain Behav Immun ; 116: 404-418, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142919

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Enfermedad de Huntington/terapia , Enfermedad de Huntington/genética , Ratones Transgénicos , ARN Ribosómico 16S , Cognición , Modelos Animales de Enfermedad , Fibras de la Dieta
5.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826110

RESUMEN

The human gut microbiome has emerged as a key influencer of human health and disease, particularly through interactions with dietary fiber. However, national dietary guidelines worldwide are only beginning to capitalize on the potential of microbiome research, which has established the vital role of host-microbe interactions in mediating the physiological effects of diet on overall health and disease. ß-glucans have been demonstrated to modulate the composition of the gut microbiota, leading to improved outcomes in cardiovascular disease (CVD). Raised serum cholesterol and blood pressure are important modifiable risk factors in the development of CVD and emerging evidence highlights the role of the gut microbiota in ameliorating such biomarkers and clinical characteristics of the disease. The proposed mechanism of action of ß-glucans on the pathophysiological mechanisms of disease have yet to be elucidated. Validating gaps in the literature may substantiate ß-glucans as a potential novel dietary therapy against modifiable risk factors for CVD and would further support the public health significance of including a habitual fiber-rich diet.

6.
Br J Nutr ; : 1-14, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826102

RESUMEN

The effect of single dietary fibre (DF) on lowering uric acid (UA) level has been reported in the literature. However, the potential protective mechanism of DF against potassium oxybate-induced hyperuricaemia (HUA), as modelled by prophylactic administration, remains unclear. The data demonstrate that DF significantly decreased serum and cerebral tissue UA concentrations, inhibited xanthine oxidase expression and activity in the liver and reduced levels of creatinine and urea nitrogen in the serum. Additionally, it mitigated the deposition of amyloid-ß in cerebral tissue. Correlation analysis showed that DF modulated the Toll-like receptor 4/NF-κB signalling pathway, attenuating oxidative stress and inflammatory responses in HUA mice. Additionally, DF helps to maintain the composition of the gut microbiota, reducing harmful Desulfovibrio and enriching beneficial Akkermansia and Ruminococcus populations. The results of the faecal metabolomics analysis indicate that DF facilitates the regulation of metabolic pathways involved in oxidative stress and inflammation. These pathways include pyrimidine metabolism, tryptophan metabolism, nucleotide metabolism and vitamin B6 metabolism. Additionally, the study found that DF has a preventive effect on anxiety-like behaviour induced by HUA. In summary, DF shows promise in mitigating HUA and cognitive deficits, primarily by modulating gut microbiota and metabolites.

7.
Br J Nutr ; : 1-8, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279668

RESUMEN

The UK population is living longer; therefore, promoting healthy ageing via positive nutrition could have widespread public health implications. Moreover, dietary fibre intake is associated with health benefits; however, intake is below UK recommendations (30 g/d). Utilising national dietary survey data can provide up-to-date information on a large representative cohort of UK older adults, so that tailored solutions can be developed in the future. This study used cross-sectional data from the National Diet and Nutrition Survey (years 2008-2009 to 2018-2019) for older adults' (n 1863; 65-96 years) dietary fibre intake (three-to-four-day food diaries), top ten dietary fibre-rich foods, associated factors (demographics, dietary/lifestyle habits) and various health outcomes (anthropometric, blood and urine). Mean dietary fibre intake was 18·3 g/d (range: 2·9-55·1 g/d); therefore, below the UK dietary recommendations, with compliance at 5·7 %. In addition, there were five significant associations (P < 0·05) related to lower dietary fibre intake such as increasing age group, without own natural teeth, impaired chewing ability, lower education leaving age and poor general health. Older adults' key foods containing dietary fibre were mainly based on convenience such as baked beans, bread and potatoes. Positively, higher dietary fibre consumption was significantly associated (P = 0·007) with reduced diastolic blood pressure. In summary, the benefits of dietary fibre consumption were identified in terms of health outcomes and oral health were key modulators of intake. Future work should focus on a life course approach and the role of food reformulation to help increase dietary fibre intake.

8.
Nutr Res Rev ; : 1-18, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324277

RESUMEN

Pectin is composed of a group of complex polysaccharides that are naturally found in various plants and are associated with a range of beneficial health effects. Health outcomes from dietary pectin can vary depending on botanical origin, dietary dose and structure of pectin. The objective of this scoping review is to build a comprehensive overview of the current evidence available on intervention studies conducted in humans and to better understand the possible knowledge gaps in terms of structure-function relationships across the different health-related effects. PubMed and Embase databases were searched using PRISMA-ScR guidelines, yielding 141 references (from the initial 3704), representing 134 intervention studies performed between 1961 and 2022 that met inclusion criteria. Studies were divided into six categories, which included gut health, glycaemic response and appetite, fat metabolism, bioavailability of micronutrients, immune response and other topics. Review of these human intervention studies identified a variety of cohort characteristics and populations (life stage, health status, country), sources/types of pectin (i.e. citrus, sugarbeet, apple, other and non-defined), intervention timeframes (from one single intake to 168 d) and doses (0.1-50 g/d) that were tested for health outcomes in people. Gut health, post-prandial glucose regulation and maintenance of blood cholesterol represented the largest categories of studied outcomes. Further research to strengthen the structure-function relationships for pectin with health properties and associated outcomes is warranted and will benefit from a more precise description of physico-chemical characteristics and molecular compositions, such as degree of esterification, weight, degree of branching, viscosity, gel formation and solubility.

9.
Public Health Nutr ; 27(1): e59, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299336

RESUMEN

OBJECTIVE: Within the UK, dietary fibre intakes are well below recommended intakes and associated with increased risk of obesity. This study aimed to explore the views of parents and children on barriers and facilitators to increasing fibre intakes and improving diets, alongside investigating the appropriateness of intervention components to overcome modifiable barriers. DESIGN: Qualitative study including semi-structured interviews and focus groups informed by the Theoretical Domains Framework (TDF) and the Capability-Opportunity-Motivation-Behaviour (COM-B) model. PARTICIPANTS: Year 5 children (aged 9-10-years) and parents, recruited through London primary schools. RESULTS: A total of twenty-four participants (eleven parents and thirteen children) took part. Five key themes were identified as barriers and facilitators, namely lack of (and improving) knowledge, social factors (including parent-child conflicts, limited time for food preparation, influence of peer and family members), current eating habits, influence of the school, community and home environment in shaping eating behaviours, and the importance of choice and variety in finding foods that are healthy and tasty. Parents strongly supported school-based dietary interventions to enable consistent messaging at home and school and help support dietary behaviour change. Practical sessions (such as workshops to strengthen knowledge, taste tests and food swap ideas) were supported by parents and children. CONCLUSIONS: By using a theory-driven approach to explore the barriers and facilitators to increasing fibre intake, this research identified important themes and modifiable barriers to behaviour change and identifies acceptable intervention components to overcome barriers and bring about sustained dietary behaviour change in primary school children.


Asunto(s)
Dieta , Obesidad , Humanos , Niño , Investigación Cualitativa , Padres , Instituciones Académicas , Reino Unido
10.
Appetite ; 192: 107109, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914038

RESUMEN

The UK has an ever-increasing ageing population; hence, promoting balanced nutrition can have fundamental health and cost benefits. In addition, the majority of older adults' dietary fibre intake is below recommendations and this is despite its well-cited benefits; therefore, more emphasis should be placed on identifying viable age-suitable strategies to overcome the associated dietary fibre-related knowledge gap. Accordingly, one hundred and seventy older adults (65-87 years) were recruited to partake in two survey related studies: (1) initial insights (e.g., dietary fibre-related knowledge, awareness, attitudes and behaviour as well as information preferences) were captured to inform the design of educational materials; and (2) the impact of two targeted educational materials on modulating older adults' future dietary fibre intake was tested. Older adults were willing to learn more about dietary fibre and requested additional information relating to its benefits, recommendations and food-based examples in a clear and accessible format. Therefore, two educational materials (factsheet and practical tips) were developed encompassing key themes. Overall, older adults engaged with the educational materials (regardless of topic and format); thus, demonstrating the potential benefits of this approach going forwards. There was strong agreement with all variables: learning something new, change future dietary fibre intake, format liking, content engaging and share with others as well as the overall experience being cited as useful/helpful. Going forwards, importance should be placed on measuring dietary fibre consumption post engaging with educational materials. In addition, utilising a holistic approach incorporating support from different sources (e.g., health professionals, government, food companies, supermarkets and community) could be fundamental in helping older adults to consume more dietary fibre and subsequently contributing to positive health outcomes.


Asunto(s)
Envejecimiento , Estado Nutricional , Humanos , Anciano , Encuestas y Cuestionarios , Fibras de la Dieta
11.
J Hum Nutr Diet ; 37(5): 1186-1196, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39138876

RESUMEN

INTRODUCTION: Metabolic flexibility (MetF), defined as the ability to switch between fat and glucose oxidation, is increasingly recognised as a critical marker for assessing responses to dietary interventions. Previously, we showed that the consumption of multifibre bread improved insulin sensitivity and reduced low-density lipoprotein cholesterol (LDLc) levels in overweight and obese individuals. As a secondary objective, we aimed to explore whether our intervention could also improve MetF. METHODS: In this study, 39 subjects at cardiometabolic risk participated in a double-blind, randomised, crossover trial lasting 8 weeks, repeated twice. During each phase, participants consumed either 150 g of standard bread daily or bread enriched with a mixture of seven dietary fibres. MetF response was assessed using a mixed-meal tolerance test (MMTT), analysing changes in respiratory quotient (∆RQ) measured using indirect calorimetry. RESULTS: Although there were no significant differences in ∆RQ changes induced by dietary fibre between the two diets, these changes were positively correlated with postprandial triglyceride excursion (∆TG) at baseline. Subgroup analysis of baseline fasting and postprandial plasma metabolites was conducted to characterise MetF responders. These responders exhibited higher baseline fasting LDLc levels and greater post-MMTT ∆TG. CONCLUSION: In conclusion, although dietary fibres did not directly impact MetF in this study, our findings highlight potential determinants of MetF response, warranting further investigation in dedicated future interventions.


Asunto(s)
Pan , Estudios Cruzados , Fibras de la Dieta , Periodo Posprandial , Humanos , Fibras de la Dieta/administración & dosificación , Masculino , Femenino , Método Doble Ciego , Persona de Mediana Edad , Adulto , Triglicéridos/sangre , Calorimetría Indirecta , Obesidad/dietoterapia , Dieta/métodos , LDL-Colesterol/sangre , Resistencia a la Insulina , Sobrepeso/dietoterapia , Sobrepeso/sangre , Sobrepeso/metabolismo , Glucemia/metabolismo
12.
Int J Food Sci Nutr ; 75(6): 571-581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38982571

RESUMEN

Fructans are commonly used as dietary fibre supplements for their ability to promote the growth of beneficial gut microbes. However, fructan consumption has been associated with various dosage-dependent side effects. We characterised side effects in an exploratory analysis of a randomised trial in healthy adults (n = 40) who consumed 18 g/day inulin or placebo. We found that individuals weighing more or habitually consuming higher fibre exhibited the best tolerance. Furthermore, we identified associations between gut microbiome composition and host tolerance. Specifically, higher levels of Christensenellaceae R-7 group were associated with gastrointestinal discomfort, and a machine-learning-based approach successfully predicted high levels of flatulence, with [Ruminococcus] torques group and (Oscillospiraceae) UCG-002 sp. identified as key predictive taxa. These data reveal trends that can help guide personalised recommendations for initial inulin dosage. Our results support prior ecological findings indicating that fibre supplementation has the greatest impact on individuals whose baseline fibre intake is lowest.


Asunto(s)
Fibras de la Dieta , Suplementos Dietéticos , Fructanos , Microbioma Gastrointestinal , Inulina , Humanos , Fibras de la Dieta/farmacología , Masculino , Adulto , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Fructanos/farmacología , Inulina/farmacología , Adulto Joven , Peso Corporal , Persona de Mediana Edad , Flatulencia
13.
Int J Food Sci Nutr ; 75(3): 293-305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225882

RESUMEN

Irritable bowel syndrome (IBS) is a condition affecting the digestive system and can be triggered by several different factors, including diet. To ease symptoms of IBS, a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is often recommended. Pasta, as a staple food in the Western World, is naturally high in FODMAPs. This study investigates the impact of insoluble and soluble dietary fibre ingredients in low-FODMAPs pasta. The assessment included physicochemical, sensory, and nutritional quality. Soluble fibre strengthened gluten network, which caused a lower cooking loss and a lower release of sugars during in vitro starch digestion. Insoluble fibre interfered with the gluten network development to a higher extent causing a higher sugar release during digestion. This study reveals the most suitable fibre ingredients for the development of pasta with elevated nutritional value and sensory characteristics compared to commercial products on the market. This type of pasta has a high potential of being suitable for IBS patients.


Asunto(s)
Fibras de la Dieta , Fermentación , Síndrome del Colon Irritable , Valor Nutritivo , Fibras de la Dieta/análisis , Humanos , Síndrome del Colon Irritable/dietoterapia , Alimentos Fortificados/análisis , Monosacáridos/análisis , Polímeros , Glútenes/análisis , Almidón , Digestión , Oligosacáridos/análisis , Culinaria/métodos , Disacáridos/análisis
14.
Int J Food Sci Nutr ; 75(5): 518-526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38910266

RESUMEN

Functionally distinct dietary fibre sources may be combined in reformulated foods to restore a natural spectrum of health attributes. Effects of wheat bran (WB), psyllium husk, guar gum and Raftilose™ combinations on hydrated faecal mass (HFM), were determined. A valid rat model was fed diets supplemented with 10% WB, 10% WB with 1-6% psyllium in 1% steps, and 10% WB/5% psyllium with 1-7% guar gum or 1-6% Raftilose in 1% steps. Fully hydrated faecal pellets gave HFM values in the human range, increasing by 2.4 ± 0.29 g per gram of WB ingested, and by 15.6 ± 1.52 g per g of psyllium. Equations for incremental changes in HFM predicted intakes of fibre combinations required for adequate daily HFM, and it is shown how expressing relative effects of foods on HFM as functional equivalents would allow quantitative personalised management of HFM for reduced constipation and colorectal cancer in humans.


Asunto(s)
Fibras de la Dieta , Heces , Galactanos , Mananos , Gomas de Plantas , Psyllium , Fibras de la Dieta/farmacología , Animales , Heces/química , Humanos , Mananos/farmacología , Gomas de Plantas/farmacología , Galactanos/farmacología , Ratas , Psyllium/farmacología , Masculino , Ratas Sprague-Dawley , Estreñimiento/dietoterapia , Modelos Animales
15.
Molecules ; 29(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202852

RESUMEN

Lemon peel represents an interesting by-product owing to its content of dietary fibre (DF) and (poly)phenols, which is of great importance for its valorisation. Hence, the objective of this study was to characterise the DF, total phenolic content (TPC), and antioxidant capacity of two lemon-peel-derived ingredients using two different methods (drying with warm air and enzymatic hydrolysis with pectinesterase). The analysis included a DF assessment, followed by neutral sugars characterisation through GC-FID and uronic acids determination via colorimetry. Subsequently, TPC and antioxidant capacity using the FRAP method were quantified through spectrophotometry. The swelling capacity (SWC), water retention capacity (WRC), and fat absorption capacity (FAC) were also determined as functional properties. It was observed that pectinesterase treatment led to a reduction in soluble DF and an increase in insoluble DF. This treatment also affected the pectin structure, thereby diminishing its ability to absorb water and fat within its matrix. The TPC was also reduced, resulting in a decrease in antioxidant capacity. Conversely, employing warm air exhibited a noteworthy increase in antioxidant capacity. This underscores its crucial contribution to the valorisation of lemon peel, not only by diminishing the environmental impact but also by enabling the acquisition of fibre ingredients with a noteworthy antioxidant capacity.


Asunto(s)
Antioxidantes , Fibras de la Dieta , Antioxidantes/farmacología , Cromatografía de Gases , Colorimetría , Fenoles , Agua
16.
Food Technol Biotechnol ; 62(1): 59-71, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601961

RESUMEN

Research background: Watermelon rind, a by-product of watermelon juice processing, contains large amounts of dietary fibre and phenols with antioxidant capacity. The use of agro-industrial by-products would both improve economic benefits and reduce environmental emissions. The aim of this research is to examine the effect of the particle size of watermelon rind powder on the quality of high-fibre pasta. Experiment approach: The nutritional, physical and physicochemical quality of three samples of watermelon rind powder, sieved through three sieves with aperture size of 400, 210 and 149 µm, were analysed. Durum wheat semolina with watermelon rind powder mass fraction of 10 % were mixed and used to make pasta. Nutritional, textural and cooking quality, sensory acceptability, in vitro glycaemic index and antioxidant bioaccessibility of high-fibre pasta with added watermelon rind powder of different particle sizes were evaluated and compared. Results and conclusions: When the sieve aperture size was reduced from 400 to 149 µm, the soluble dietary fibre and total phenolic contents of watermelon rind powder were increased by 35 and 15 %, respectively, while its insoluble dietary fibre content was decreased by 21 %. Decrease in sieve aperture size from 410 to 149 µm reduced phenolic bioaccessibility of the fortified pasta from 63 to 57 %, but enhanced its predicted glycaemic index from 50 to 69. It also decreased the pasta hardness by 13 %, but improved its elongation rate and tensile strength by 13 and 40 %, respectively. The finer the particles of the watermelon rind powder, the longer the optimal cooking time, the higher the water absorption index, and the lower the cooking loss of the supplemented pasta. Consumers did not notice any significant differences in the overall acceptability among all pasta samples. Novelty and scientific contribution: The particle size of the watermelon rind powder had a major effect on nutritional value, texture and cooking quality of the fortified pasta. In particular, the predicted glycaemic index and antioxidant bioaccessibility of high-fibre pasta were significantly affected by the particle size of the dietary fibre material used in the recipe.

17.
Arch Anim Nutr ; 78(2): 142-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38941242

RESUMEN

Dietary fibre is mainly classified according to its chemical characteristics but structure and particle size of fibre-rich feedstuff can also be decisive for digestion and performance. So far, only few studies investigated this in pigs. This experiment aimed to compare coarse and finely ground dried hemp plants and apple pomace regarding performance and ileal and total tract nutrient digestibility of growing pigs. Coarse or finely ground apple pomace or dried hemp plants were added to the diet of 56 nine weeks old growing pigs (DanBred x Duroc), housed in flat decks with each 2 animals. The growing pigs received the experimental diets for three weeks while performance was recorded. Eight pigs per group were sacrificed and digesta and organ tissue sampled. The stomach health was evaluated by visually scoring of the mucosa integrity. Apparent ileal (AID) and total tract digestibility (ATTD) were calculated using titanium dioxide as marker. Statistical analyses were performed using two-way ANOVA (p < 0.05). The highest feed intake (fibre particle size, p = 0.018) and bodyweight gain (fibre particle size, p = 0.018; fibre source x particle size interaction, p = 0.040), was observed in animals fed finely ground apple pomace, while the feed conversion ratio was 8-12% lower in pigs fed finely ground fibre sources (p = 0.012). No differences in stomach mucosa integrity were detected between the groups. The relative pancreas (p = 0.045), stomach (p < 0.001), and jejunum (p = 0.010) weights were higher in animals fed diets containing apple pomace. In contrast, the relative liver, caecum and colon weights were not affected by fibre source or particle size. The AID of protein and amino acids was not affected, while ATTD was increased by fibre source (hemp vs. apple pomace) reducing faecal nitrogen excretion. The AID of calcium was increased when diets contained apple pomace (p < 0.001), while zinc AID and ATTD were enhanced when diets contained dried hemp (p = 0.016; p = 0.016, respectively). Our results suggest that the structure as well as the chemical characteristics should be considered in a future fibre evaluation system in pigs.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Fibras de la Dieta , Digestión , Malus , Animales , Alimentación Animal/análisis , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Digestión/fisiología , Dieta/veterinaria , Malus/química , Masculino , Tamaño de la Partícula , Nutrientes/metabolismo , Sus scrofa/crecimiento & desarrollo , Sus scrofa/fisiología , Fermentación , Cannabis/química
18.
Plant Foods Hum Nutr ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153164

RESUMEN

To prevent losses before consumption due to the rapid ripening of bananas, turning unripe bananas into flour and using it in bakery products can both enhance the functional properties of the product and transform bananas into a high-value product. In this study, it is aimed to enhance the functional properties of banana flour through fermentation, thereby investigating its potential use in the production of healthy snack biscuits which are widely consumed, especially by children and busy people. Different proportions (0%, 15%, and 30%) of unripe banana flour (UBF) and fermented unripe banana flour (FUBF) were added to biscuits, evaluating their impact on physical (color, diameter, thickness, spread ratio), textural (hardness), and functional properties (total phenolic content, antioxidant activity, dietary fiber, glycemic index). The effect of FUBF on biscuit spread ratio compared to UBF was positive (p < 0.05). The addition of UBF or FUBF significantly increased total phenolic content (TPC) and antioxidant activity (p < 0.05), with the highest TPC (1167.88 mg GAE/kg) observed in biscuits containing 30% FUBF (p < 0.05). Fermentation showed no significant effect on antioxidant activity of samples (p > 0.05). The glycemic index (GI) values were notably high across all samples, with the control at 78.59 and the 30% FUBF sample at 72.74 (p < 0.05), indicating all samples fell into the high GI food category. Biscuit hardness decreased significantly with UBF or FUBF addition (p < 0.05), while fermentation had no significant impact on hardness (p > 0.05). This study underscores the potential of UBF or FUBF to contribute to healthier snack options with improved functional characteristics.

19.
Gut ; 72(2): 314-324, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35697422

RESUMEN

OBJECTIVE: Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet. DESIGN: To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects. RESULTS: We show that oligofructose sustains the production of 6α-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6α-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6α-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism. CONCLUSION: Modulation of the gut microbiota with oligofructose enriches bacteria involved in 6α-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.


Asunto(s)
Ácidos y Sales Biliares , Dieta Occidental , Fibras de la Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glucosa , Receptores Acoplados a Proteínas G , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Peso Corporal , Glucosa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fibras de la Dieta/administración & dosificación
20.
Br J Nutr ; 130(6): 1015-1023, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36458339

RESUMEN

Functional constipation is a significant health issue impacting the lives of an estimated 14 % of the global population. Non-pharmaceutical treatment advice for cases with no underlying medical conditions focuses on exercise, hydration and an increase in dietary fibre intake. An alteration in the composition of the gut microbiota is thought to play a role in constipation. Prebiotics are non-digestible food ingredients that selectively stimulate the growth of a limited number of bacteria in the colon with a benefit for host health. Various types of dietary fibre, though not all, can act as a prebiotic. Short-chain fatty acids produced by these microbes play a critical role as signalling molecules in a range of metabolic and physiological processes including laxation, although details are unclear. Prebiotics have a history of safe use in the food industry spanning several decades and are increasingly used as supplements to alleviate constipation. Most scientific research on the effects of prebiotics and gut microbiota has focussed on inflammatory bowel disease rather than functional constipation. Very few clinical studies evaluated the efficacy of prebiotics in the management of constipation and their effect on the microbiota, with highly variable designs and conflicting results. Despite this, broad health claims are made by manufacturers of prebiotic supplements. This narrative review provides an overview of the literature on the interaction of prebiotics with the gut microbiota and their potential clinical role in the alleviation of functional constipation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Prebióticos , Estreñimiento/prevención & control , Estreñimiento/tratamiento farmacológico , Fibras de la Dieta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda