Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999194

RESUMEN

Dextransucrases play a crucial role in the production of dextran from economical sucrose; therefore, there is a pressing demand to explore novel dextransucrases with better performance. This study characterized a dextransucrase enzyme, LmDexA, which was identified from the Leuconostoc mesenteroides NN710. This bacterium was isolated from the soil of growing dragon fruit in Guangxi province, China. We successfully constructed six different N-terminal truncated variants through sequential analysis. Additionally, a truncated variant, ΔN190LmDexA, was constructed by removing the 190 amino acids fragment from the N-terminal. This truncated variant was then successfully expressed heterologously in Escherichia coli and purified. The purified ΔN190LmDexA demonstrated optimal hydrolysis activity at a pH of 5.6 and a temperature of 30 °C. Its maximum specific activity was measured to be 126.13 U/mg, with a Km of 13.7 mM. Results demonstrated a significant improvement in the heterologous expression level and total enzyme activity of ΔN190LmDexA. ΔN190LmDexA exhibited both hydrolytic and transsaccharolytic enzymatic activities. When sucrose was used as the substrate, it primarily produced high-molecular-weight dextran (>400 kDa). However, upon the addition of maltose as a receptor, it resulted in the production of a significant amount of oligosaccharides. Our results can provide valuable information for enhancing the characteristics of recombinant dextransucrase and potentially converting sucrose into high-value-added dextran and oligosaccharides.


Asunto(s)
Clonación Molecular , Glucosiltransferasas , Leuconostoc mesenteroides , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Leuconostoc mesenteroides/enzimología , Leuconostoc mesenteroides/genética , Dextranos/química , Dextranos/biosíntesis , Dextranos/metabolismo , Hidrólisis , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Mutación , Especificidad por Sustrato , Sacarosa/metabolismo , Cinética , Temperatura
2.
World J Microbiol Biotechnol ; 40(4): 114, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418710

RESUMEN

Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 µg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.


Asunto(s)
Leuconostoc mesenteroides , Animales , Ovinos , Dextranos/metabolismo , Dextranasa/química , Dextranasa/metabolismo , Manitol/metabolismo , Malí , Glucosiltransferasas/metabolismo , Oligosacáridos/química , Sacarosa/metabolismo , Vitaminas/metabolismo , Leuconostoc/metabolismo
3.
J Biol Chem ; 295(17): 5602-5613, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161118

RESUMEN

The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10-13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dextranos/metabolismo , Glucosiltransferasas/metabolismo , Oenococcus/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Vías Biosintéticas , Glucosiltransferasas/química , Modelos Moleculares , Oenococcus/química , Dominios Proteicos
4.
Biochem Biophys Res Commun ; 523(3): 651-657, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31948759

RESUMEN

Non-digestible oligosaccharides have wide food industrial applications as dietary fibers and prebiotics. The aim of this study is to realize the effective biosynthesis of isomalto-oligosaccharides (IMOs) and reduce the production of by-product dextran. In the presence of acceptors improved the dextransucrase reaction shifting to oligosaccharides formation but a number of by-products dextran appeared. Maltose acceptor performed stronger inhibition behaviors in dextran synthesis than lactose and glucose acceptor due to its higher efficiencies. Acceptors had no influence on the structure of by-product dextran which mainly composed of α-(1,6)-glycosidic linkages and low α-(1,3)-glycosidic branch. In addition, the Mw and contents of IMOs and oligodextrans synthesized by dual-enzyme were hard to control. Addition of maltose acceptor in the dual-enzyme reaction, the adequate dextranase preferentially degraded dextran than the acceptor products to yield the IMOs. Results indicated that the combined use of the dual-enzyme and the maltose acceptor is a simple and effective method to promote the high-quality of functional IMOs.


Asunto(s)
Dextranasa/metabolismo , Glucosiltransferasas/metabolismo , Leuconostoc mesenteroides/enzimología , Maltosa/metabolismo , Oligosacáridos/metabolismo , Dextranos/química , Dextranos/metabolismo , Hidrólisis , Leuconostoc mesenteroides/química , Leuconostoc mesenteroides/metabolismo , Oligosacáridos/química , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 104(4): 1761-1772, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31900558

RESUMEN

Streptococcus mutans is a common principal causative agent of dental caries. In this communication, we describe that the antibodies raised against purified dextransucrase effectively inhibited the growth of S. mutans. The purified enzyme showed 58-fold enrichment, 17.5% yield and a specific activity of 3.96 units/mg protein. Purified IgG fraction of the antibody showed significant affinity with the antigenic protein. Immunotritation of the enzyme with dextransucrase antibody showed a gradual increase in inhibition of dextransucrase activity. The growth of S. mutans was also inhibited by 85% in the presence of 28 µg of IgG fraction of the antibody. Antibodies also impaired glucosyltransferase activity (72.8%) and biofilm formation by 92.6% in S. mutans. Western blot analysis revealed no cross reactivity with the various tissues of mice, rat, rabbit and humans. Dot blot analysis showed little reactivity with Lactobacillus acidophilus and Staphylococcus aureus and there was no reactivity with other bacterial strains like Enterococcus faecalis, Escherichia coli and Salmonella typhimurium. These findings suggest that antibody raised against dextransucrase exhibit inhibitory effects on the growth of S. mutans and biofilm formation with no reactivity with various mammalian tissues, thus it could be an effective anticariogenic agent.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Caries Dental/prevención & control , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/inmunología , Streptococcus mutans/inmunología , Animales , Biopelículas/crecimiento & desarrollo , Reacciones Cruzadas , Caries Dental/inmunología , Humanos , Inmunoglobulina G/inmunología , Ratones , Conejos , Ratas , Streptococcus mutans/crecimiento & desarrollo
6.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916950

RESUMEN

Leuconostoc mesenteroides DRP105 isolated from Chinese sauerkraut juice is an intensive producer of dextran. We report the complete genome sequence of Leu. mesenteroides DRP105. This strain contains a dextransucrase gene (dsr) involved in the production of dextran, possibly composed of glucose monomers. To explore the dextran synthesis mechanism of Leu. mesenteroides DRP105, we constructed a dsr-deficient strain derived from Leu. mesenteroides DRP105 using the Cre-loxP recombination system. The secondary structure prediction results showed that Leu. mesenteroides DRP105 dextransucrase (Dsr) was coded by dsr and contained 17.07% α-helices, 29.55% ß-sheets, 10.18% ß-turns, and 43.20% random coils. We also analyzed the dextran yield, monosaccharide change, organic acid, and amino-acid content of Leu. mesenteroides DRP105 and Leu. mesenteroides DRP105-Δdsr. The result showed that the lack of dsr changed the Leu. mesenteroides DRP105 sugar metabolism pathway, which in turn affected the production of metabolites.


Asunto(s)
Glucosiltransferasas/genética , Leuconostoc mesenteroides/genética , Metabolismo de los Hidratos de Carbono , Genoma Bacteriano , Leuconostoc mesenteroides/enzimología
7.
Microbiology (Reading) ; 165(9): 956-966, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31210628

RESUMEN

Dextransucrases are extracellular enzymes, which are exclusively expressed by lactic acid bacteria (LAB) and produce α-1→6 linked glucose polymers from sucrose. In this study, two dextransucrases derived from water kefir borne Lactobacillus hordei TMW 1.1822 and Lactobacillus nagelii TMW 1.1827 were identified and comparatively investigated. Differences between both proteins mainly arise from an additional C-terminal glucan-binding domain and the presence of a signal motif in the L. nagelii TMW 1.1827 dextransucrase. L. hordei TMW 1.1822 released the enzyme only in the presence of its substrate sucrose in contrast to L. nagelii TMW 1.1827, while both strains functionally expressed the dextransucrases independently of sucrose. Both enzymes could be recovered as crude protein extracts in culture supernatants, as they are not covalently bound to the cell surface. This enabled the formation of dextrans at equal reaction conditions as well as their subsequent structural analysis in terms of molecular structure and molecular weight. The volumetric transglycosylation and hydrolysis activities were distinctly different for both enzymes, which produced O3-branched dextrans with a comparable degree of branching. Moreover, identical oligosaccharides were obtained for both dextrans upon endo-dextranase digestion, while some differences in the polysaccharide fine structures could be identified from the varying portions of certain oligosaccharides. Dextrans synthesized by the dextransucrase released by L. nagelii exhibited an averaged molecular weight (Mw) of 7.9×107 Da, while those produced by the dextransucrase released by L. hordei exhibited an Mw of 6.1×107 Da. Moreover, glycosylation of glucansucrases by LAB was identified for the first time for the released dextransucrase of L. nagelii TMW 1.1827. Our study therefore reveals new molecular insights into how dextransucrases released by water kefir borne L. hordei TMW 1.1822 and L. nagelii TMW 1.1827 contribute to the complex formation of the traditional beverage water kefir.


Asunto(s)
Glucosiltransferasas , Kéfir/microbiología , Lactobacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fermentación , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Lactobacillus/aislamiento & purificación , Sacarosa/metabolismo
8.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367004

RESUMEN

During nonventilated storage of carrots, CO2 gradually accumulates to high levels and causes modifications in the carrot's microbiome toward dominance of Lactobacillales and Enterobacteriales The lactic acid bacterium Leuconostoc mesenteroides secretes a slimy exudate over the surface of the carrots. The objective of this study was to characterize the slime components and the potential cause for its secretion under high CO2 levels. A proteomic analysis of the exudate revealed bacterial glucosyltransferases as the main proteins, specifically, dextransucrase. A chemical analysis of the exudate revealed high levels of dextran and several simple sugars. The exudate volume and dextran amount were significantly higher when L. mesenteroides was incubated under high CO2 levels than when incubated in an aerated environment. The treatment of carrot medium plates with commercial dextransucrase or exudate protein extract resulted in similar sugar profiles and dextran production. Transcriptome analysis demonstrated that dextran production is related to the upregulation of the L. mesenteroides dextransucrase-encoding genes dsrD and dsrT during the first 4 to 8 h of exposure to high CO2 levels compared to aerated conditions. A phylogenetic analysis of L. mesenteroides YL48 dsrD revealed a high similarity to other dsr genes harbored by different Leuconostoc species. The ecological benefit of dextran production under elevated CO2 requires further investigation. However, this study implies an overlooked role of CO2 in the physiology and fitness of L. mesenteroides in stored carrots, and perhaps in other food items, during storage under nonventilated conditions.IMPORTANCE The bacterium Leuconostoc mesenteroides is known to cause spoilage of different types of foods by secreting a slimy fluid that damages the quality and appearance of the produce. Here, we identified a potential mechanism by which high levels of CO2 affect the spoilage caused by this bacterium by upregulating dextran synthesis genes. These results have broader implications for the study of the physiology, degradation ability, and potential biotechnological applications of Leuconostoc.


Asunto(s)
Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Glucosiltransferasas/genética , Leuconostoc mesenteroides/genética , Regulación hacia Arriba , Proteínas Bacterianas/metabolismo , Daucus carota/microbiología , Dextranos/biosíntesis , Dextranos/genética , Almacenamiento de Alimentos , Genes Bacterianos , Glucosiltransferasas/metabolismo , Leuconostoc mesenteroides/enzimología , Filogenia
9.
Microb Cell Fact ; 18(1): 153, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506087

RESUMEN

BACKGROUND: Dextransucrases are extracellular enzymes, which catalyze the formation of α-1→6-linked glucose polymers from sucrose. These enzymes are exclusively expressed by lactic acid bacteria, which commonly acidify the extracellular environment due to their physiology. Dextransucrases are thus confronted with steadily changing reaction conditions in regards to the environmental pH, which can further affect the amount of released dextransucrases. In this work, we studied the effect of the environmental pH on the release, the productivity and the product specificity of the dextransucrase expressed by Lactobacillus (L.) hordei TMW 1.1822. Dextransucrases were recovered as crude extracts at pH 3.5-pH 6.5 and then again used to produce dextrans at these pH values. The respectively produced dextran amounts and sizes were determined and the obtained results finally systematically correlated. RESULTS: Maximum dextran amounts were produced at pH 4.0 and pH 4.5, while the productivity of the dextransucrases significantly decreased at pH 3.5 and pH 6.5. The distribution of dextran amounts produced at different pH most likely reflects the pH dependent activity of the dextransucrases released by L. hordei, since different transglycosylation rates were determined at different pH using the same dextransucrase amounts. Moreover, similar hydrolysis activities were detected at all tested conditions despite significant losses of transglycosylation activities indicating initial hydrolysis prior to transglycosylation reactions. The molar masses and rms radii of dextrans increased up to pH 5.5 independently of the stability of the enzyme. The gelling properties of dextrans produced at pH 4.0 and pH 5.5 were different. CONCLUSIONS: The presented methodological approach allows the controlled production of dextrans with varying properties and could be transferred and adapted to other microbes for systematic studies on the release and functionality of native sucrases or other extracellular enzymes.


Asunto(s)
Dextranos/biosíntesis , Dextranos/química , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Lactobacillus/enzimología , Concentración de Iones de Hidrógeno , Cinética , Especificidad por Sustrato
10.
Bioprocess Biosyst Eng ; 42(10): 1681-1693, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31286218

RESUMEN

The genes for dextransucrase and dextranase were cloned from the genomic regions of Leuconostoc mesenteroides MTCC 10508 and Streptococcus mutans MTCC 497, respectively. Heterologous expression of genes was performed in Escherichia coli. The purified enzyme fractions were entrapped in the alginate-pectin beads. A high immobilization yield of dextransucrase (~ 96%), and dextranase (~ 85%) was achieved. Alginate-pectin immobilization did not affect the optimum temperature and pH of the enzymes; rather, the thermal tolerance and storage stability of the enzymes was improved. The repetitive batch experiments suggested substantially good operational stability of the co-immobilized enzyme system. The synergistic catalytic reactions of alginate-pectin co-entrapped enzyme system were able to produce 7-10 g L-1 oligosaccharides of a high degree of polymerization (DP 3-9) from sucrose (~ 20 g L-1) containing feedstocks, e.g., table sugar and cane molasses. The alginate-pectin-based co-immobilized enzyme system is a useful catalytic tool to bioprocess the agro-industrial bio-resource for the production of prebiotic biomolecules.


Asunto(s)
Alginatos/química , Proteínas Bacterianas/química , Dextranasa/química , Enzimas Inmovilizadas/química , Glucosiltransferasas/química , Leuconostoc mesenteroides/enzimología , Oligosacáridos/química , Pectinas/química , Streptococcus mutans/enzimología , Proteínas Bacterianas/genética , Dextranasa/genética , Estabilidad de Enzimas , Enzimas Inmovilizadas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Glucosiltransferasas/genética , Concentración de Iones de Hidrógeno , Leuconostoc mesenteroides/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptococcus mutans/genética
11.
Biotechnol Appl Biochem ; 63(4): 581-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25939683

RESUMEN

The extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-1426 was produced and purified using polyethylene glycol fractionation. In our earlier study, it was reported that L. mesenteroides dextransucrase synthesizes a high-molecular mass dextran (>2 × 10(6)  Da) with ∼85.5% α-(1→6) linear and ∼14.5% α-(1→3) branched linkages. Isomalto-oligosaccharides (IMOs) were synthesized through depolymerization of dextran by the action of dextranase. The degree of polymerization of IMOs was 2-10 as confirmed by mass spectrometry. The nuclear magnetic resonance spectroscopic analysis revealed the presence of α-(1→3) linkages in the synthesized IMOs. The IMOs were resistant to dextranase, α-glucosidase, and α-amylase, and therefore can have potential application as food additives in the functional foods.


Asunto(s)
Biotecnología/métodos , Dextranos/metabolismo , Alimentos Funcionales/microbiología , Glucosiltransferasas/metabolismo , Leuconostoc mesenteroides/metabolismo , Oligosacáridos/biosíntesis , Espacio Extracelular/enzimología , Hidrólisis , Leuconostoc mesenteroides/citología , Temperatura
12.
Prep Biochem Biotechnol ; 46(8): 822-832, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26861959

RESUMEN

The dextransucrase gene from Weissella confusa Cab3, having an open reading frame of 4.2 kb coding for 1,402 amino acids, was amplified, cloned, and expressed in Lactococcus lactis. The recombinant dextransucrase, WcCab3-rDSR was expressed as extracellular enzyme in M17 medium with a specific activity of 1.5 U/mg which after purification by PEG-400 fractionation gave 6.1 U/mg resulting in 4-fold purification. WcCab3-rDSR was expressed as soluble and homogeneous protein of molecular mass, approximately, 180 kDa as analyzed by SDS-PAGE. It displayed maximum enzyme activity at 35°C at pH 5.0 in 50 mM sodium acetate buffer. WcCab3-rDSR gave Km of 6.2 mM and Vm of 6.3 µmol/min/mg. The characterization of dextran synthesized by WcCab3-rDSR by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the structural similarities with the dextran produced by the native dextransucrase. The modeled structure of WcCab3-rDSR using the crystal structures of dextransucrase from Lactobacillus reuteri (protein data bank, PDB id: 3HZ3) and Streptococcus mutans (PDB id: 3AIB) as templates depicted the presence of different domains such as A, B, C, IV, and V. The domains A and B are circularly permuted in nature having (ß/α)8 triose phosphate isomerase-barrel fold making the catalytic core of WcCab3-rDSR. The structure superposition and multiple sequence alignment analyses of WcCab3-rDSR with available structures of enzymes from family 70 GH suggested that the amino acid residue Asp510 acts as a nucleophile, Glu548 acts as a catalytic acid/base, whereas Asp621 acts as a transition-state stabilizer and these residues are found to be conserved within the family.


Asunto(s)
Glucosiltransferasas/química , Weissella/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Dextranos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Lactococcus lactis/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Weissella/química , Weissella/genética , Weissella/metabolismo
13.
Molecules ; 21(8)2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27548117

RESUMEN

Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes ß-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.


Asunto(s)
Enzimas Inmovilizadas/química , Glicósido Hidrolasas/química , Estabilidad de Enzimas , Modelos Moleculares , Filogenia , Conformación Proteica , Especificidad por Sustrato
14.
Appl Microbiol Biotechnol ; 99(23): 10001-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26239071

RESUMEN

We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose using a nisin-controlled gene expression system in Lactococcus lactis. These polymers have potential for production of biodegradable gels, fibers, and films. We optimized production of DsrI using several different background vectors, signal peptides, strains, induction conditions, and bioreactor parameters to increase extracellular accumulation. Optimal production of the enzyme utilized a high-copy plasmid, pMSP3535H3, which contains a nisin immunity gene, L. lactis LM0230, and bioreactors maintained at pH 6.0 to stabilize the enzyme. We were able to significantly improve growth using the lactic acid inhibitor heme and by continuous removal of lactic acid with anion exchange resins, but enzyme production was less than the controls. The recombinant enzyme under optimized conditions accumulated in the culture medium to approximately 380 mg/L, which was over 150-fold higher compared to the native L. mesenteroides strain. Methods are also included for purification of DsrI utilizing the glucan-binding domain of the enzyme.


Asunto(s)
Glucanos/metabolismo , Glicosiltransferasas/biosíntesis , Glicosiltransferasas/metabolismo , Leuconostoc/enzimología , Reactores Biológicos/microbiología , Cromatografía por Intercambio Iónico , Clonación Molecular , Medios de Cultivo/química , Expresión Génica , Vectores Genéticos , Glicosiltransferasas/genética , Concentración de Iones de Hidrógeno , Ácido Láctico/aislamiento & purificación , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Lactococcus lactis/metabolismo , Leuconostoc/genética , Nisina/metabolismo , Plásmidos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Activación Transcripcional/efectos de los fármacos
15.
J Food Sci Technol ; 52(9): 5961-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26345014

RESUMEN

Oligosaccharides can be synthesized using the sugars present in the fruit juices through the dextransucrase acceptor reaction. In the present work, the effect of reducing sugar and sucrose concentration on oligosaccharide formation in lemon juice was evaluated through response surface methodology. The oligosaccharide formation in lemon juice was favored at high concentrations of sucrose (75 g/L) and reducing sugar (75 g/L). At this synthesis conditions, an oligosaccharide concentration of 94.81 g/L was obtained with a conversion of 63.21% of the initial sugars into the target product. Oligosaccharides with degree of polymerization up to 11 were obtained. The lemon juice was dehydrated in spouted bed using maltodextrin as drying adjuvant. The powder obtained at 60°C with 20 % maltodextrin presented low moisture (2.24 %), low water activity (Aw = 0.18) and the lowest reconstitution time (~46 s). The results showed that lemon juice is suitable for oligosaccharides enzyme synthesis and can be dehydrated in spouted bed.

16.
J Food Sci Technol ; 51(9): 2078-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25190866

RESUMEN

The enzyme dextransucrase in a medium containing sucrose and an acceptor as substrate synthesizes prebiotics oligosaccharides. The cashew apple juice works as a source of acceptors because it is rich in glucose and fructose (enzyme acceptors). The use of cashew apple juice becomes interesting because it aims at harnessing the peduncle of the cashew that is wasted during the nut processing, which is the product of greater economic expression. The production of dextransucrase enzyme was done by fermentative process by inoculating the bacterium Leuconostoc mesenteroides NRRL B512F into a culture medium containing sucrose as the only carbon source. Thus, the aim of this work was the production of prebiotic oligosaccharides by enzymatic process with addition of the dextransucrase enzyme to the clarified cashew apple juice. Dextran yield was favored by the combination of low concentrations of sucrose and reducing sugars. The formation of oligosaccharides was favored by increasing the concentration of reducing sugars and by the combination of high concentrations of sucrose and reducing sugars, the highest concentration of oligosaccharides obtained was 104.73 g/L and the qualitative analysis showed that at concentrations of 25 g/L and 75 g/L of sucrose and reducing sugar, respectively, it is possible to obtain oligosaccharides of degree of polymerization up to 12. The juice containing prebiotic oligosaccharide is a potential new functional beverage.

17.
Biotechnol Biotechnol Equip ; 28(2): 342-349, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26019519

RESUMEN

A study of the influence of different plant terpenoids and amino sugar derivate acarbose on the activity of glycosyltransferase complex and purified dextransucrase from Leuconostoc mesenteroides URE 13 strain was carried out. All the tested terpenoids showed an inhibitory effect on glycosyltransferases from strain URE 13 at concentration 0.34 mmol. Out of all studied diterpenoids splendidin showed the strongest inhibitory effect decreasing the activity of both glycosyltransferase complex and dextransucrase with 70% and 90%, respectively. The triterpenoid ursolic showed the second strongest inhibitory effect as the enzyme complex and dextransucrase from strain URE 13 retain 27% and 13% of their initial enzyme activity. Despite the higher degree of inhibition of purified dextransucrase, compared to the enzyme complex, a complete inhibition of the enzyme was not observed at the highest used terpenoid concentration (3.42 mmol). When acarbose was used as an inhibitor, a complete inhibition of dextransucrase was observed at concentration of 6.9 mmol, while the enzyme complex retained 8% of its enzyme activity. Ki values of 0.28 mmol for splendidin, 0.37 mmol for ursolic acid and 0.29 mmol for acarbose were determined from the kinetic studies of purified dextransucrase.

18.
Int J Biol Macromol ; 277(Pt 1): 134094, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059525

RESUMEN

Leuconostoc citreum JZ-002 was extracted from artisanal orange wine. This strain was used to synthesize dextran with a purification extraction of 27.9 g/L. The resulting dextran had a molecular weight of 2.45 × 106 Da. A significant portion, amounting to 64 % of the structure, is constituted by the main chain, with α-(1,6) glycosidic bonds acting as the linkages. In contrast, the branched chain, comprising 34 % of the entire molecule, is characterized by the presence of α-(1,3) glycosidic bonds. The dextransucrase DsrB, believed to be accountable for the formation of the dextran backbone, was successfully cloned into the pET-28a-AcmA vector. The recombinant expression of the enzyme was achieved. Purified recombinant enzymes and immobilized in a single go using the gram-positive enhancer matrix (GEM). The maximum yield of dextran produced by suchimmobilized enzyme was 191.9 g/L. The composition featured a dextran connected via α-(1,6) glycosidic linkages. Molecular weight controlled synthesis was achieved with sucrose concentrations of 100-2000 mM and enzyme concentrations of 320-1280 U. The Mw of the synthesized dextran extended from 4680 to 1,320,000 Da. By controlling the ratio between enzyme concentration and sucrose concentration, dextrans with diverse Mw can be enzymatically generated.


Asunto(s)
Dextranos , Glucosiltransferasas , Leuconostoc , Dextranos/química , Dextranos/biosíntesis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Leuconostoc/enzimología , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sacarosa/química
19.
Front Biosci (Elite Ed) ; 16(2): 17, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38939916

RESUMEN

Dextran is an exopolysaccharide synthesized in reactions catalyzed by enzymes obtained from microbial agents of specific species and strains. Products of dextran polysaccharides with different molecular weights are suitable for diverse pharmaceutical and clinical uses. Dextran solutions have multiple characteristics, including viscosity, solubility, rheological, and thermal properties; hence, dextran has been studied for its commercial applications in several sectors. Certain bacteria can produce extracellular polysaccharide dextran of different molecular weights and configurations. Dextran products of diverse molecular weights have been used in several industries, including medicine, cosmetics, and food. This article aims to provide an overview of the reports on dextran applications in blood transfusion and clinical studies and its biosynthesis. Information has been summarized on enzyme-catalyzed reactions for dextran biosynthesis from sucrose and on the bio-transformation process of high molecular weight dextran molecules to obtain preparations of diverse molecular weights and configurations.


Asunto(s)
Dextranos , Dextranos/química , Dextranos/biosíntesis , Humanos , Transfusión Sanguínea , Peso Molecular
20.
J Med Microbiol ; 72(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289487

RESUMEN

Introduction. Dextransucrase produced by Streptococcus mutans plays a vital role in the formation of dental caries by synthesizing exopolysaccharides from sucrose, which helps in the attachment of microbes to the tooth surface, causing caries. Exploring antibody production against S. mutans antigens could be an effective method to protect against dental caries.Hypothesis. Dextransucrase antibodies may help in the prevention of caries formation by inhibiting essential cariogenic factors.Aims. The aim of this study was to investigate the effects of dextransucrase antibodies on biofilm formation and certain associated cariogenic factors of S. mutans.Methodology. Dextransucrase was purified from culture of S. mutans. The antisera against the enzyme were raised in rabbits. The effect of dextransucrase antibodies on biofilm formation was studied using scanning electron microscopy, fluorescence microscopy and quantitative real-time polymerase chain reaction. The effects of the antibodies on associated cariogenic factors were examined using established methods. The cross-reactivity of antibodies with human lung, liver, heart, thyroid and kidney tissues was evaluated by immunohistochemistry.Results. Our findings showed impaired biofilm formation in S. mutans in the presence of dextransucrase antibodies. Genes associated with biofilm formation such as gtfB, gtfC, brpA, relA, Smu.630 and vicK were downregulated (50-97 %) by dextransucrase antibodies in S. mutans. The adherence of S. mutans to glass surface was reduced by 58 % and hydrophobicity was reduced by 55.2 % in the presence of the antibodies compared to the controls. Immunohistochemistry studies revealed no cross-reactivity of human tissues with dextransucrase antibodies.Conclusions. These findings suggest that antibodies raised against dextransucrase exhibit a profound inhibitory effect on biofilm formation and vital cariogenic factors of S. mutans, which supports the contention that dextransucrase could be a promising antigen to study for its anticariogenic potential.


Asunto(s)
Caries Dental , Streptococcus mutans , Animales , Humanos , Conejos , Streptococcus mutans/genética , Biopelículas , Caries Dental/prevención & control , Glucosiltransferasas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda