Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2302809120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467285

RESUMEN

Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.


Asunto(s)
Hígado Graso , Obesidad , Ratones , Ratas , Masculino , Femenino , Animales , Obesidad/genética , Melaninas/genética , Hipotálamo , Inflamación , Dieta Alta en Grasa/efectos adversos , Neuronas , Mediadores de Inflamación , Prostaglandinas
2.
Biochem Biophys Res Commun ; 695: 149411, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154262

RESUMEN

Berberine, isolated from Coptis chinensis and Phellodendron amurense, can attenuate colonic injury and modulate gut microbiota disorders in ulcerative colitis (UC). However, the mechanism and causal relationship between gut microbiota and the efficacy of Berberine on UC are still unclear, which were investigated by pseudo-germ-free (PGF) mice, 16S rRNA gene analysis and transcriptome analysis in this study. The results demonstrated that Berberine improved gut microbiota disorders, colon damage, tight-junction proteins, inflammatory and anti-inflammatory cytokines in DSS-induced colitis mice with intact gut microbiota but not in PGF mice. Besides, immune-related and inflammation-related pathways were closely related to the efficacy that Berberine alleviated colitis by regulating gut microbiota. Furthermore, Berberine reduced PGE2, PLA2, COX-2, Ptges, EP2 and p-Stat3 only in colitis mice with intact gut microbiota. In summary, our study confirms that Berberine inhibits PLA2-COX-2-PGE2-EP2 pathway in UC through gut microbiota, leading to the alleviation of inflammation in colon, which further elucidates the underlying mechanism and promotes the application of Berberine in UC.


Asunto(s)
Berberina , Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Berberina/farmacología , Berberina/uso terapéutico , Ciclooxigenasa 2 , Dinoprostona , ARN Ribosómico 16S , Inflamación/tratamiento farmacológico , Fosfolipasas A2 , Sulfato de Dextran , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL
3.
BMC Urol ; 24(1): 117, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851678

RESUMEN

BACKGROUND: This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS: By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS: The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS: PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Dinoprostona , Subtipo EP2 de Receptores de Prostaglandina E , Uréter , Cálculos Ureterales , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Uréter/metabolismo , Transducción de Señal/fisiología , Masculino , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542305

RESUMEN

We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 µg/dose) over three weeks, the time course and magnitude of the responses varied. The onset of action of NS-304 (IP-PG receptor agonist) and rivenprost (EP4-PG receptor agonist) was slower than that of misoprostol (mixed EP2/EP3/EP4-PG receptor agonist), PF-04217329 (EP2-PG receptor agonist), and butaprost (EP2-PG receptor agonist). The rank order of IOP-lowering efficacies aligned with the onset of actions of these compounds. Peak IOP reductions relative to vehicle controls were as follows: misoprostol (74.52%) = PF-04217329 (74.32%) > butaprost (65.2%) > rivenprost (58.4%) > NS-304 (55.3%). A literature survey indicated that few previously evaluated compounds (e.g., latanoprost, timolol, pilocarpine, brimonidine, dorzolamide, cromakalim analog (CKLP1), losartan, tissue plasminogen activator, trans-resveratrol, sodium 4-phenyl acetic acid, etc.) in various animal models of steroid-induced OHT were able to match the effectiveness of misoprostol, PF-04217329 or butaprost. Since a common feature of the latter compounds is their relatively high affinity and potency at the EP2-PG receptor sub-type, which activates the production of intracellular cAMP in target cells, our studies suggest that drugs selective for the EP2-PG receptor may be suited to treat corticosteroid-induced OHT.


Asunto(s)
Acetamidas , Acetatos , Misoprostol , Hipertensión Ocular , Pirazinas , Sulfonamidas , Animales , Ratones , Misoprostol/farmacología , Misoprostol/uso terapéutico , Activador de Tejido Plasminógeno , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/tratamiento farmacológico , Receptores de Prostaglandina , Subtipo EP4 de Receptores de Prostaglandina E , Esteroides
5.
Exp Eye Res ; 237: 109691, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884204

RESUMEN

Macular edema (ME) is caused with disruption of the blood-retinal barrier (BRB) followed by fluid accumulation in the subretinal space. Main components of the outer and inner BRB are retinal pigment epithelial (RPE) cells and retinal microvascular endothelial cells, respectively. In addition, glial cells also participate in the functional regulation of the BRB as the member of 'neurovascular unit'. Under various stresses, cells in neurovascular units secrete inflammatory cytokines. Neuroinflammation induced by these cytokines can cause BRB dysfunction by degrading barrier-related proteins and contribute to the pathophysiology of ME. Prostaglandins (PGs) are crucial lipid mediators involved in neuroinflammation. Among PGs, a novel EP2 agonist, omidenepag (OMD) acts on not only the uveoscleral pathway but also the conventional pathway, unlike F prostanoid (FP) receptor agonists. Moreover, the combination use of the EP and the FP agonist is not recommended because of the risk of inflammation. In this study, we investigated effects of OMD and latanoprost acid (LTA), a FP agonist, on BRB and microglia in vitro and in vivo. To investigate the function of outer/inner BRB and microglia, in vitro, ARPE-19 cells, human retinal microvascular endothelial cells (HRMECs), and MG5 cells were used. Cell viability, inflammatory cytokines mRNA and protein levels, barrier morphology/function, and microglial activation were evaluated using proliferation assays, qRT-PCR, ELISA, immunocytochemistry, trans-epithelial electrical resistance, and permeability assay. Moreover, after vitreous injection into the mouse, outer BRB morphology, glial activation, and cytokine expression were assessed. Each OMD and LTA alone did not affect the viability or cytokines expression of the three types of cells. In ARPE-19 cells, the co-stimulation of OMD and LTA increased the mRNA and protein levels of inflammatory cytokines (IL-6, TNF-α, and VEGF-A) and decreased the barrier function and the junction-related protein (ZO-1 and ß-catenin). By contrast in HRMECs, the co-stimulation affected significant differences in the mRNA levels of some cytokine (IL-6 and TNF-α) but enhanced the barrier function. In MG5 cells, the cytokines mRNA and size of Iba1-expressed cell were increased. A non-steroidal anti-inflammatory inhibited the barrier dysfunction and the junction-related protein downregulation in ARPE-19 cells and activation of MG5 cells. Also in vivo, the co-stimulation induced outer BRB disruption, cytokine increase, and retinal glial activation. Therefore, the co-stimulation of EP2 and FP induced the inflammatory cytokine-mediated outer BRB disruption, the enhanced inner BRB function, and the microglial activation. The BRB imbalance and the intrinsic prostaglandin production may be involved in OMD-related inflammation.


Asunto(s)
Barrera Hematorretinal , Edema Macular , Ratones , Humanos , Animales , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Edema Macular/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Exp Eye Res ; 229: 109415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803996

RESUMEN

Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Latanoprost , Humor Acuoso/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Presión Intraocular , Antihipertensivos/uso terapéutico
7.
FASEB J ; 36(11): e22576, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183332

RESUMEN

G protein-coupled receptors (GPCRs) are widely therapeutically targeted, and recent advances in allosteric modulator development at these receptors offer further potential for exploitation. Intracellular allosteric modulators (IAM) represent a class of ligands that bind to the receptor-effector interface (e.g., G protein) and inhibit agonist responses noncompetitively. This potentially offers greater selectivity between receptor subtypes compared to classical orthosteric ligands. However, while examples of IAM ligands are well described, a more general methodology for assessing compound interactions at the IAM site is lacking. Here, fluorescent labeled peptides based on the Gα peptide C terminus are developed as novel binding and activation biosensors for the GPCR-IAM site. In TR-FRET binding studies, unlabeled peptides derived from the Gαs subunit were first characterized for their ability to positively modulate agonist affinity at the ß2 -adrenoceptor. On this basis, a tetramethylrhodamine (TMR) labeled tracer was synthesized based on the 19 amino acid Gαs peptide (TMR-Gαs19cha18, where cha = cyclohexylalanine). Using NanoBRET technology to detect binding, TMR-Gαs19cha18 was recruited to Gs coupled ß2 -adrenoceptor and EP2 receptors in an agonist-dependent manner, but not the Gi-coupled CXCR2 receptor. Moreover, NanoBRET competition binding assays using TMR-Gαs19cha18 enabled direct assessment of the affinity of unlabeled ligands for ß2 -adrenoceptor IAM site. Thus, the NanoBRET platform using fluorescent-labeled G protein peptide mimetics offers novel potential for medium-throughput screens to identify IAMs, applicable across GPCRs coupled to a G protein class. Using the same platform, Gs peptide biosensors also represent useful tools to probe orthosteric agonist efficacy and the dynamics of receptor activation.


Asunto(s)
Técnicas Biosensibles , Receptores de Interleucina-8B , Regulación Alostérica , Sitio Alostérico , Aminoácidos , Proteínas de Unión al GTP/metabolismo , Ligandos , Péptidos/metabolismo , Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-8B/metabolismo
8.
FASEB J ; 36(1): e22067, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34914140

RESUMEN

The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.


Asunto(s)
Córnea/metabolismo , Fibroblastos/metabolismo , Presión Osmótica/efectos de los fármacos , Subtipo EP2 de Receptores de Prostaglandina E , Esferoides Celulares/metabolismo , Córnea/ultraestructura , Estrés del Retículo Endoplásmico , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Proteínas del Ojo/metabolismo , Femenino , Fibroblastos/ultraestructura , Humanos , Masculino , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Esferoides Celulares/ultraestructura
9.
Inflamm Res ; 72(4): 683-701, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745211

RESUMEN

Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.


Asunto(s)
Epilepsia , Humanos , Convulsiones/complicaciones , Convulsiones/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Astrocitos/metabolismo
10.
Bioorg Med Chem Lett ; 87: 129255, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965536

RESUMEN

EP2 is a G protein-coupled receptor for prostaglandin E2 (PGE2) derived from cell membrane-released arachidonic acid upon various harmful and injurious stimuli. It is commomly upregulated in tumors and injured brain tissues, as its activation by PGE2 is widely believed to be involved in the pathophysiological mechanisms underlying these conditions via promoting pro-inflammatory reactions. Herein, we report the discovery of two novel macrocyclic peptidomimetics based on the screening of a cyclic γ-AApeptides combinatorial library. These two cyclic γ-AApeptides showed excellent binding affinity with the EP2 protein, and they may lead to the development of novel therapeutic agents and/or molecular probes to modulate the PGE2/EP2 signaling.


Asunto(s)
Dinoprostona , Neoplasias , Humanos , Dinoprostona/metabolismo , Ligandos , Transducción de Señal , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo
11.
Bioessays ; 43(2): e2000213, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33165991

RESUMEN

Prostaglandin (PG) D2 and PGE2 are positional isomers; however, they sometimes exhibit opposite physiological functions, such as in cancer development. Because DP receptors are considered to be a duplicated copy of EP2 receptors, PGD2 and PGE2 cross-react with both receptors. These prostanoids may act as biased agonists for each receptor. In reviewing this field, a hypothesis was proposed to explain the opposed effects of these prostanoids from the viewpoints of the evolution of, mutations in, and biased activities of their receptors. Previous findings showing more mutations/variations in DP receptors than EP2 receptors among individuals worldwide indicate that DP receptors are still in a rapid evolutionary stage. The opposing effects of these prostanoids on cancer development may be attributed to the biased activity of PGE2 for DP receptors, which may incidentally develop during the process of the old ligand, PGE2 gaining selectivity to newly diverged DP receptors.


Asunto(s)
Dinoprostona , Diagnóstico Preimplantación , Femenino , Humanos , Ligandos , Embarazo , Prostaglandinas E , Receptores de Prostaglandina/genética
12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674907

RESUMEN

Prostaglandin E2 (PGE2) is an important maturation mediator for dendritic cells (DCs). However, increased PGE2 levels in the tumor exert immunosuppressive effects on DCs by signaling through two E-Prostanoid (EP) receptors: EP2 and EP4. Blocking EP-receptor signaling of PGE2 with antagonists is currently being investigated for clinical applications to enhance anti-tumor immunity. In this study, we investigated a new delivery approach by encapsulating EP2/EP4 antagonists in polymeric nanoparticles. The nanoparticles were characterized for size, antagonist loading, and release. The efficacy of the encapsulated antagonists to block PGE2 signaling was analyzed using monocyte-derived DCs (moDCs). The obtained nanoparticles were sized between 210 and 260 nm. The encapsulation efficacy of the EP2/EP4 antagonists was 20% and 17%, respectively, and was further increased with the co-encapsulation of both antagonists. The treatment of moDCs with co-encapsulation EP2/EP4 antagonists prevented PGE2-induced co-stimulatory marker expression. Even though both antagonists showed a burst release within 15 min at 37 °C, the nanoparticles executed the immunomodulatory effects on moDCs. In summary, we demonstrate the functionality of EP2/EP4 antagonist-loaded nanoparticles to overcome PGE2 modulation of moDCs.


Asunto(s)
Dinoprostona , Subtipo EP2 de Receptores de Prostaglandina E , Dinoprostona/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Monocitos/metabolismo , Inmunomodulación
13.
J Neurosci ; 41(5): 1105-1117, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33293358

RESUMEN

A multidimensional inflammatory response ensues after status epilepticus (SE), driven partly by cyclooxygenase-2-mediated activation of prostaglandin EP2 receptors. The inflammatory response is typified by astrocytosis, microgliosis, erosion of the blood-brain barrier (BBB), formation of inflammatory cytokines, and brain infiltration of blood-borne monocytes. Our previous studies have shown that inhibition of monocyte brain invasion or systemic administration of an EP2 receptor antagonist relieves multiple deleterious consequences of SE. Here we identify those effects of EP2 antagonism that are reproduced by conditional ablation of EP2 receptors in immune myeloid cells and show that systemic EP2 antagonism blocks monocyte brain entry in male mice. The induction of hippocampal IL-6 after pilocarpine SE was nearly abolished in EP2 conditional KO mice. Serum albumin levels in the cortex, a measure of BBB breakdown, were significantly higher after SE in EP2-sufficient mice but not in EP2 conditional KOs. EP2 deficiency in innate immune cells accelerated the recovery from sickness behaviors following SE. Surprisingly, neurodegeneration was not alleviated in myeloid conditional KOs. Systemic EP2 antagonism prevented monocyte brain infiltration and provided broader rescue of SE-induced effects than myeloid EP2 ablation, including neuroprotection and broader suppression of inflammatory mediators. Reporter expression indicated that the cellular target of CD11b-driven Cre was circulating myeloid cells but, unexpectedly, not microglia. These findings indicate that activation of EP2 receptors on immune myeloid cells drives substantial deficits in behavior and disrupts the BBB after SE. The benefits of systemic EP2 antagonism can be attributed, in part, to blocking brain recruitment of blood-borne monocytes.SIGNIFICANCE STATEMENT Unabated seizures reduce quality of life, promote the development of epilepsy, and can be fatal. We previously identified activation of prostaglandin EP2 receptors as a driver of undesirable consequences of seizures. However, the relevant EP2-expressing cell types remain unclear. Here we identify peripheral innate immune cells as a driver of the EP2-related negative consequences of seizures. Removal of EP2 from peripheral immune cells was beneficial, abolishing production of a key inflammatory cytokine, accelerating weight regain, and limiting behavioral deficits. These findings provide evidence that EP2 engagement on peripheral immune and brain endothelia contributes to the deleterious effects of SE, and will assist in the development of beneficial therapies to enhance quality of life in individuals who suffer prolonged seizures.


Asunto(s)
Inmunidad Innata/fisiología , Células Mieloides/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/biosíntesis , Estado Epiléptico/metabolismo , Animales , Citometría de Flujo/métodos , Hipocampo/citología , Hipocampo/inmunología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Mieloides/inmunología , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/inmunología , Estado Epiléptico/genética , Estado Epiléptico/inmunología
14.
Prostaglandins Other Lipid Mediat ; 162: 106662, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779854

RESUMEN

The cellular mechanism by which epoxy fatty acids (EpFA) improves disease status is not well characterized. Previous studies suggest the involvement of cellular receptors and cyclic AMP (cAMP). Herein, the action of EpFAs derived from linoleic acid (LA), arachidonic acid (ARA), and docosahexaenoic acid on cAMP levels was studied in multiple cell types to elucidate relationships between EpFAs, receptors and cells' origin. cAMP levels were enhanced in HEK293 and LLC-PK1 cells by EpFAs from LA and ARA. Using selective antagonists, the EpFA effects on cAMP levels appear dependent on the prostaglandin E2 receptor 2 (EP2) but not 4 (EP4). Human coronary artery smooth muscle cells responded similarly to the EpFAs. However, we were not able to show the involvement of any of the receptors tested in this cell type. The results pinpointed distinct cell lines and receptor subtypes that natively respond to EpFA.


Asunto(s)
AMP Cíclico , Subtipo EP4 de Receptores de Prostaglandina E , Animales , Ácido Araquidónico , AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos , Ácidos Grasos , Células HEK293 , Humanos , Ácidos Linoleicos , Mamíferos/metabolismo , Prostaglandinas , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
15.
J Biol Chem ; 295(38): 13338-13352, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32727851

RESUMEN

Prostaglandin E2 (PGE2) is well-known as an endogenous proinflammatory prostanoid synthesized from arachidonic acid by the activation of cyclooxygenase-2. E type prostanoid (EP) receptors are cognates for PGE2 that have four main subtypes: EP1 to EP4. Of these, the EP2 and EP4 prostanoid receptors have been shown to couple to Gαs-protein and can activate adenylyl cyclase to form cAMP. Studies suggest that EP4 receptors are involved in colorectal homeostasis and cancer development, but further work is needed to identify the roles of EP2 receptors in these functions. After sufficient inflammation has been evoked by PGE2, it is metabolized to 15-keto-PGE2 Thus, 15-keto-PGE2 has long been considered an inactive metabolite of PGE2 However, it may have an additional role as a biased and/or partial agonist capable of taking over the actions of PGE2 to gradually terminate reactions. Here, using cell-based experiments and in silico simulations, we show that PGE2-activated EP4 receptor-mediated signaling may evoke the primary initiating reaction of the cells, which would take over the 15-keto-PGE2-activated EP2 receptor-mediated signaling after PGE2 is metabolized to 15-keto-PGE2 The present results shed light on new aspects of 15-keto-PGE2, which may have important roles in passing on activities to EP2 receptors from PGE2-stimulated EP4 receptors as a "switched agonist." This novel mechanism may be significant for gradually terminating PGE2-evoked inflammation and/or maintaining homeostasis of colorectal tissues/cells functions.


Asunto(s)
Simulación por Computador , Dinoprostona/análogos & derivados , Modelos Biológicos , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Dinoprostona/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
16.
J Neuroinflammation ; 18(1): 273, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801055

RESUMEN

BACKGROUND: Alzheimer's disease (AD) causes substantial medical and societal burden with no therapies ameliorating cognitive deficits. Centralized pathologies involving amyloids, neurofibrillary tangles, and neuroinflammatory pathways are being investigated to identify disease-modifying targets for AD. Cyclooxygenase-2 (COX-2) is one of the potential neuroinflammatory agents involved in AD progression. However, chronic use of COX-2 inhibitors in patients produced adverse cardiovascular effects. We asked whether inhibition of EP2 receptors, downstream of the COX-2 signaling pathway, can ameliorate neuroinflammation in AD brains in presence or absence of a secondary inflammatory stimuli. METHODS: We treated 5xFAD mice and their non-transgenic (nTg) littermates in presence or absence of lipopolysaccharide (LPS) with an EP2 antagonist (TG11-77.HCl). In cohort 1, nTg (no-hit) or 5xFAD (single-hit-genetic) mice were treated with vehicle or TG11-77.HCl for 12 weeks. In cohort 2, nTg (single-hit-environmental) and 5xFAD mice (two-hit) were administered LPS (0.5 mg/kg/week) and treated with vehicle or TG11-77.HCl for 8 weeks. RESULTS: Complete blood count analysis showed that LPS induced anemia of inflammation in both groups in cohort 2. There was no adverse effect of LPS or EP2 antagonist on body weight throughout the treatment. In the neocortex isolated from the two-hit cohort of females, but not males, the elevated mRNA levels of proinflammatory mediators (IL-1ß, TNF, IL-6, CCL2, EP2), glial markers (IBA1, GFAP, CD11b, S110B), and glial proteins were significantly reduced by EP2 antagonist treatment. Intriguingly, the EP2 antagonist had no effect on either of the single-hit cohorts. There was a modest increase in amyloid-plaque deposition upon EP2 antagonist treatment in the two-hit female brains, but not in the single-hit genetic female cohort. CONCLUSION: These results reveal a potential neuroinflammatory role for EP2 in the two-hit 5xFAD mouse model. A selective EP2 antagonist reduces inflammation only in female AD mice subjected to a second inflammatory insult.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Enfermedad de Alzheimer/patología , Anemia/sangre , Animales , Recuento de Células Sanguíneas , Ciclooxigenasa 2/genética , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Transgénicos , Neuroglía/metabolismo , Enfermedades Neuroinflamatorias/patología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Caracteres Sexuales , Transducción de Señal/efectos de los fármacos
17.
Exp Eye Res ; 205: 108489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33587909

RESUMEN

3D organoid cultures were used to elucidate the periocular effects of several anti-glaucoma drugs including a prostaglandin F2α analogue (bimatoprost acid; BIM-A), EP2 agonist (omidenepag; OMD) or a Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor (ripasudil; Rip) on Grave's orbitopathy (GO) related orbital fatty tissue. 3D organoids were prepared from GO related human orbital fibroblasts (GHOFs) obtained from patients with GO. The effects of either 100 nM BIM-A, 100 nM OMD or 10 µM Rip on the 3D GHOFs organoids were examined with respect to organoid size, physical properties by a micro-squeezer, and the mRNA expression of extracellular matrix (ECM) proteins including collagen (COL) 1, COL 4, COL 6, and fibronectin (FN), ECM regulatory genes including lysyl oxidase (LOX), Connective Tissue Growth Factor (CTGF) and inflammatory cytokines including interleukin-1ß (IL1ß) and interleukin-6 (IL6). The size of the 3D GHOFs organoids decreased substantially in the presence of BIM-A, but also increased substantially in the presence of the others (OMD or Rip). The physical stiffness of the 3D GHOFs organoids was significantly decreased by Rip. BIM-A caused significantly the down-regulation of three ECM genes, Col 1, Col 6 and Fn, and two ECM regulatory genes and the up-regulation of IL6. In the presence of OMD, two ECM genes, Col 1 and Fn, and LOX were significantly down-regulated but IL1ß and IL6 were significantly up-regulated. In the case of Rip, Col 1, FN and CTGF were significant down-regulated. Our present findings indicate that anti-glaucoma drugs modulate the structures and physical properties 3D GHOFs organoids in different manners by modifying the gene expressions of ECM, ECM regulatory factors and inflammatory cytokines. The results indicate that the benefits and demerits of anti-glaucoma medications need to be scrutinized carefully, in cases of patients with GO.


Asunto(s)
Dinoprost/agonistas , Fibroblastos/efectos de los fármacos , Oftalmopatía de Graves/tratamiento farmacológico , Órbita/efectos de los fármacos , Organoides/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Quinasas Asociadas a rho/antagonistas & inhibidores , Bimatoprost/farmacología , Técnicas de Cultivo de Célula , Proteínas de la Matriz Extracelular/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Oftalmopatía de Graves/metabolismo , Humanos , Isoquinolinas/farmacología , Conformación Molecular , Órbita/patología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfonamidas/farmacología
18.
Lipids Health Dis ; 20(1): 155, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742290

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Neuroinflammation and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS: In this study, multiple regression and combined receiver operating characteristic (ROC) curve analyses were used to determine the relationship between the neuroinflammatory marker α-synuclein and lipid mediator markers related to inflammation induction, such as cyclooxygenase-2 and prostaglandin-EP2 receptors, in the etiology of ASD. Additionally, the study aimed to determine the linear combination that maximizes the partial area under ROC curves for a set of markers. Forty children with ASD and 40 age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of α-synuclein, cyclo-oxygenase-2, and prostaglandin-EP2 receptors were measured in the plasma of both groups. Statistical analyses using ROC curves and multiple and logistic regression models were performed. RESULTS: A remarkable increase in the area under the curve was observed using combined ROC curve analyses. Moreover, higher specificity and sensitivity of the combined markers were reported. CONCLUSIONS: The present study indicates that measurement of the predictive value of selected biomarkers related to neuroinflammation and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the etiological mechanism of ASD and its link with metabolism. This information may facilitate early diagnosis and intervention.


Asunto(s)
Trastorno del Espectro Autista/sangre , Ciclooxigenasa 2/sangre , Subtipo EP2 de Receptores de Prostaglandina E/sangre , alfa-Sinucleína/sangre , Trastorno del Espectro Autista/diagnóstico , Biomarcadores/sangre , Estudios de Casos y Controles , Preescolar , Humanos , Masculino , Enfermedades Neuroinflamatorias/sangre , Curva ROC
19.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948328

RESUMEN

Cyclooxygenase metabolizes dihomo-γ-linolenic acid and arachidonic acid to form prostaglandin (PG) E, including PGE1 and PGE2, respectively. Although PGE2 is well known to play an important role in the development and maintenance of hyperalgesia and allodynia, the role of PGE1 in pain is unknown. We confirm whether PGE1 induced pain using orofacial pain behavioral test in mice and determine the target molecule of PGE1 in TG neurons with whole-cell patch-clamp and immunohistochemistry. Intradermal injection of PGE1 to the whisker pads of mice induced a reduced threshold, enhancing the excitability of HCN channel-expressing trigeminal ganglion (TG) neurons. The HCN channel-generated inward current (Ih) was increased by 135.3 ± 4.8% at 100 nM of PGE1 in small- or medium-sized TG, and the action of PGE1 on Ih showed a concentration-dependent effect, with a median effective dose (ED50) of 29.3 nM. Adenylyl cyclase inhibitor (MDL12330A), 8-bromo-cAMP, and the EP2 receptor antagonist AH6809 inhibited PGE1-induced Ih. Additionally, PGE1-induced mechanical allodynia was blocked by CsCl and AH6809. PGE1 plays a role in mechanical allodynia through HCN2 channel facilitation via the EP2 receptor in nociceptive neurons, suggesting a potential therapeutic target in that PGE1 could be involved in pain as endogenous substances under inflammatory conditions.


Asunto(s)
Alprostadil/metabolismo , Ganglios Espinales/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Dolor/metabolismo , Canales de Potasio/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Ganglio del Trigémino/metabolismo , Potenciales de Acción/fisiología , Animales , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Nociceptores/metabolismo , Dimensión del Dolor/métodos
20.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925005

RESUMEN

To elucidate the additive effects of an EP2 agonist, omidenepag (OMD) or butaprost (Buta) on the Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) on adipose tissue, two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells were analyzed by lipid staining, the mRNA expression of adipogenesis-related genes, extracellular matrix (ECM) molecules including collagen (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D organoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced (1) an enlargement of the 3D organoids; (2) a substantial enhancement in lipid staining as well as the expression of the Pparγ, Ap2 and Leptin genes; (3) a significant softening of the 3D organoids, the effects of which were all enhanced by Rip except for Pparγ expression; and (4) a significant downregulation in Col1 and Fn, and a significant upregulation in Col4, Col6, the effects of which were unchanged by Rip. When adding the EP2 agonist to Rip, (1) the sizes of the 3D organoids were reduced substantially; (2) lipid staining was increased (OMD), or decreased (Buta); (3) the stiffness of the 3D organoids was substantially increased in Buta; (4-1) the expression of Pparγ was suppressed (2D, OMD) or increased (2D, Buta), and the expressions of Ap2 were downregulated (2D, 3D) and Leptin was increased (2D) or decreased (3D), (4-2) all the expressions of four ECM molecules were upregulated in 2D (2D), and in 3D, the expression of Col1, Col4 was upregulated. The collective findings reported herein indicate that the addition of an EP2 agonist, OMD or Buta significantly but differently modulate the Rip-induced effects on adipogenesis and the physical properties of 2D and 3D cultured 3T3-L1 cells.


Asunto(s)
Adipogénesis/efectos de los fármacos , Alprostadil/análogos & derivados , Glicina/análogos & derivados , Isoquinolinas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Sulfonamidas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Células 3T3-L1 , Alprostadil/farmacología , Animales , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Glicina/farmacología , Ratones , Organoides , Subtipo EP2 de Receptores de Prostaglandina E/agonistas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda