Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Small ; : e2403082, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004856

RESUMEN

Mechanical metamaterials with multi-level dynamic crushing effects (MM-MLs) are designed in this study through coordinate transformation and mirror arrays. The mechanical effects of the diameter and length ratio of the struts and connecting rods, the Euler angles, and the cell numbers on the mechanical properties are investigated separately. MM-ML can exhibit significant two-level platform stress, and the local cells in the first platform stress stage undergo rotational motion, while the second platform stress stage mainly involves collapse compression and bending. Although increasing the length of the connecting rods can increase the range of Poisson's ratio, it will reduce the level of platform stress and energy absorption. Increasing the Euler angle will reduce the strain interval of the first platform stress and can improve the energy absorption capacity. In addition, increasing the cell number while maintaining a constant relative density can effectively enhance energy absorption. MM-ML has significant parameter controllability, can achieve different platform stress regions, different ranges of Poisson's ratios, and energy absorption requirements according to the application scenario, and can demonstrate functional diversity compared to existing research. The design scheme can provide ideas for adaptive crushing protection requirements.

2.
Small ; 20(23): e2307369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183382

RESUMEN

Characterized by periodic cellular unit cells, microlattices offer exceptional potential as lightweight and robust materials. However, their inherent periodicity poses the risk of catastrophic global failure. To address this limitation, a novel approach, that is to introduce microlattices composed of aperiodic unit cells inspired by Einstein's tile, where the orientation of cells never repeats in the same orientation is proposed. Experiments and simulations are conducted to validate the concept by comparing compressive responses of the aperiodic microlattices with those of common periodic microlattices. Indeed, the microlattices exhibit stable and progressive compressive deformation, contrasting with catastrophic fracture of periodic structures. At the same relative density, the microlattices outperform the periodic ones, exhibiting fracture strain, energy absorption, crushing stress efficiency, and smoothness coefficients at least 830%, 300%, 130%, and 160% higher, respectively. These improvements can be attributed to aperiodicity, where diverse failure thresholds exist locally due to varying strut angles and contact modes during compression. This effectively prevents both global fracture and abrupt stress drops. Furthermore, the aperiodic microlattice exhibits good damage tolerance with excellent deformation recoverability, retaining 76% ultimate stress post-recovery at 30% compressive strain. Overall, a novel concept of adopting aperiodic cell arrangements to achieve damage-tolerant microlattice metamaterials is presented.

3.
J Anat ; 244(3): 411-423, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37953064

RESUMEN

The artiodactyl (deer and sheep) calcaneus is a model that helps in understanding how many bones achieve anatomical optimization and functional adaptation. We consider how the dorsal and plantar cortices of these bones are optimized in quasi-isolation (the conventional view) versus in the context of load sharing along the calcaneal shaft by "tension members" (the plantar ligament and superficial digital flexor tendon). This load-sharing concept replaces the conventional view, as we have argued in a recent publication that employs an advanced analytical model of habitual loading and fracture risk factors of the deer calcaneus. Like deer and sheep calcanei, many mammalian limb bones also experience prevalent bending, which seems problematic because the bone is weaker and less fatigue-resistant in tension than compression. To understand how bones adapt to bending loads and counteract deleterious consequences of tension, it is important to examine both strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension) and non-S-M-S testing. Mechanical testing was performed on individually machined specimens from the dorsal "compression cortex" and plantar "tension cortex" of adult deer calcanei and were independently tested to failure in one of these two strain modes. We hypothesized that the mechanical properties of each cortex region would be optimized for its habitual strain mode when these regions are considered independently. Consistent with this hypothesis, energy absorption parameters were approximately three times greater in S-M-S compression testing in the dorsal/compression cortex when compared to non-S-M-S tension testing of the dorsal cortex. However, inconsistent with this hypothesis, S-M-S tension testing of the plantar/tension cortex did not show greater energy absorption compared to non-S-M-S compression testing of the plantar cortex. When compared to the dorsal cortex, the plantar cortex only had a higher elastic modulus (in S-M-S testing of both regions). Therefore, the greater strength and capacity for energy absorption of the dorsal cortex might "protect" the weaker plantar cortex during functional loading. However, this conventional interpretation (i.e., considering adaptation of each cortex in isolation) is rejected when critically considering the load-sharing influences of the ligament and tendon that course along the plantar cortex. This important finding/interpretation has general implications for a better understanding of how other similarly loaded bones achieve anatomical optimization and functional adaptation.


Asunto(s)
Calcáneo , Ciervos , Animales , Ovinos , Extremidad Inferior , Estrés Mecánico , Fenómenos Biomecánicos
4.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045755

RESUMEN

Many bones experience bending, placing one side in net compression and the other in net tension. Because bone mechanical properties are relatively reduced in tension compared with compression, adaptations are needed to reduce fracture risk. Several toughening mechanisms exist in bone, yet little is known of the influences of secondary osteon collagen/lamellar 'morphotypes' and potential interplay with intermolecular collagen cross-links (CCLs) in prevalent/predominant tension- and compression-loaded regions. Paired third metacarpals (MC3s) from 10 adult horses were prepared for mechanical testing. From one MC3/pair, 5 mm cubes were tested in compression at several mid-shaft locations. From contralateral bones, dumbbell-shaped specimens were tested in tension. Hence, habitual/natural tension- and compression-loaded regions were tested in both modes. Data included: elastic modulus, yield and ultimate strength, and energy absorption (toughness). Fragments of tested specimens were examined for predominant collagen fiber orientation (CFO; representing osteonal and non-osteonal bone), osteon morphotype score (MTS, representing osteonal CFO), mineralization, porosity and other histological characteristics. As a consequence of insufficient material from tension-tested specimens, CCLs were only examined in compression-tested specimens (HP, hydroxylysylpyridinoline; LP, lysylpyridinoline; PE, pentosidine). Among CCLs, only LP and HP/LP correlated significantly with mechanical parameters: LP with energy absorption, HP/LP with elastic modulus (both r=0.4). HP/LP showed a trend with energy absorption (r=-0.3, P=0.08). HP/LP more strongly correlated with osteon density and mineralization than CFO or MTS. Predominant CFO more strongly correlated with energy absorption than MTS in both testing modes. In general, CFO was found to be relatively prominent in affecting regional toughness in these equine MC3s in compression and tension.


Asunto(s)
Colágeno , Osteón , Huesos del Metacarpo , Animales , Caballos/fisiología , Colágeno/química , Colágeno/metabolismo , Huesos del Metacarpo/fisiología , Huesos del Metacarpo/anatomía & histología , Huesos del Metacarpo/química , Osteón/fisiología , Fenómenos Biomecánicos , Fuerza Compresiva , Estrés Mecánico , Módulo de Elasticidad
5.
J Exp Biol ; 226(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36633333

RESUMEN

To successfully capture flying insect prey, a spider's orb web must withstand the energy of impact without the silk breaking. In this study, we examined the anchor threads: the silk lines that anchor the main capture area of the web to the surrounding environment. These anchor threads can account for a large portion of the web, yet are usually excluded from experiments and simulations. We compared projectile capture and kinetic energy absorption between webs with and without access to anchor threads. Webs with anchor threads captured significantly more projectiles and absorbed significantly more energy than those with constrained anchors. This is likely because the anchor threads increase web compliance, resulting in webs with the ability to catch high-energy flying insects without breaking. Anchor threads are one example of how different types of web architecture expand the range of possible prey capture strategies by enabling the web to withstand greater impacts.


Asunto(s)
Arañas , Animales , Conducta Predatoria , Seda , Cinética
6.
Pol J Radiol ; 88: e270-e274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404547

RESUMEN

Purpose: To evaluate the absolute dose uncertainty at 2 different energies and for the large and small bowtie filters in dual-energy computed tomography (DECT). Material and methods: Measurements were performed using DECT at 80 kV and 140 kilovoltage peak (kVp), and single-energy computed tomography (CT) at 120 kV. The absolute dose was calculated from the mass-energy absorption obtained from the half-value layer (HVL) of aluminium. Results: The difference in the water-to-air ratio of the mean mass energy-absorption coefficients at 80 kV and 140 kV was 2.0% for the small bow-tie filter and 3.0% for the large bow-tie filter. At lower tube voltages, the difference in the absorbed dose with the large and small bow-tie filters was larger. Conclusions: The absolute dose uncertainty due to energy dependence was 3.0%, which could be reduced with single-energy beams at 120 kV or by using the average effective energy measurement with dual-energy beams.

7.
Small ; 18(44): e2204145, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36135783

RESUMEN

Being a lightweight material with high design freedoms, there are increasing research interests in microlattice metamaterials as sound absorbers. However, thus far, microlattices are limited to one sound dissipation mechanism, and this inhibits their broadband absorption capabilities. Herein, as opposed to improving performances via the addition of features, a dissipation mechanism is subtractively introduced by hollowing out the struts of the microlattice. Then, a class of hollow-truss metamaterial (HTM) that is capable of harnessing dual concurrent dissipation mechanisms from its complex truss interconnectivity and its hollow interior is presented. Experimental sound absorption measurements reveal superior and/or customizable absorption properties in the HTMs as compared to their constitutive solid-trusses. An optimal HTM displays a high average broadband coefficient of 0.72 at a low thickness of 24 mm. Numerically derived, a dissipation theorem based on the superimposed acoustic impedance of the critically coupled resistance and reactance of the outer-solid and inner-hollow phases, across different frequency bands, is proposed in the HTM. Complementary mechanical property studies also reveal improved compressive toughness in the HTMs. This work demonstrates the potential of hollow-trusses, where they gain the dissipation mechanism through the subtraction of the material and display excellent acoustic properties.


Asunto(s)
Bragueros , Sonido , Acústica , Presión
8.
Ecotoxicol Environ Saf ; 248: 114295, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402074

RESUMEN

This sugar beet acts as a soil remediator in areas where there are high levels of boron (B) in the soil, since it has a high requirement of boron (B) for growth, and has strong resistance to high B levels. Although B toxicity in different plants has been widely researched, little is known about the response of photosystem II (PSII) activity in sugar beet leaves to B toxicity at present. To clarify the growth and photosynthetic physiological response of sugar beet to B toxicity, the effects of different concentrations of H3BO3 (0.05, 1.5, 2.5,3.5 mM) on the growth, photosynthetic characteristics and antioxidant defense system of sugar beet seedlings were investigated by hydroponic experiments. In the present study, high B stress inhibited the growth of sugar beet and significantly decreased the biomass of the plants. There was a remarkable increase in the accumulation of B in the shoots, which affected photosynthesis and decreased the photosynthetic pigments. As B toxicity increased, leaf PSII activities and maximum photochemical efficiency of PSII (Fv/Fm) showed a tendency to decrease; at the same time, the photosynthetic performance index based on absorbed light energy (PIABS) decreased as well. Meanwhile, the energy allocation parameters of the PSII reaction center were changed, the light energy utilization capacity and the energy used for electron transfer were reduced and the thermal dissipation was increased at the same time. Furthermore, B toxicity decreased catalase (CAT) activity, increased peroxidase (POD) and superoxide dismutase (SOD) activities, and increased malondialdehyde (MDA) accumulation. According to the results obtained in this study, high B concentrations reduced the rate of photosynthesis and fluorescence, thus weakened antioxidant defense systems, and therefore inhibited the growth of sugar beet plants. Thus, in high B areas, sugar beet possesses excellent tolerance to high B levels and has a high B translocation capacity, so it can be used as a phytoremediation tool. This study provides a basis for the feasibility of sugar beet resistant to high B environments.


Asunto(s)
Beta vulgaris , Complejo de Proteína del Fotosistema II , Boro/toxicidad , Antioxidantes , Verduras , Suelo , Azúcares
9.
Nano Lett ; 21(14): 5991-5997, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264685

RESUMEN

Recent nanoscale ballistic tests have shown the applicability of nanomaterials for ballistic protection but have raised questions regarding the nanoscale structure-property relationships that contribute to the ballistic response. Herein, we report on multimillion-atom reactive molecular dynamics simulations of the supersonic impact, penetration, and failure of polyethylene (PE) and polystyrene (PS) ultrathin films. The simulated specific penetration energy (Ep*) versus impact velocity predicts to within 15% the experimentally determined Ep* for PS. For impact velocities less than 1 km s-1, a crazing/petalling failure mode is observed due to chain disentanglement, transitioning to fragmentation coupled with large amounts of adiabatic heating at velocities greater than 1 km s-1. Interestingly, the high entanglement density of PE provides enhanced penetration resistance at low velocities, whereas increased adiabatic heating in PS promotes greater penetration resistance at elevated velocities. By understanding nanoscale mechanisms of energy absorption, nanomaterials can be designed to provide superior penetration resistance.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros , Poliestirenos
10.
Small ; 17(24): e2100336, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33984173

RESUMEN

The advent of 3D printing brought about the possibilities of microlattice metamaterials as advanced materials with the potentials to surpass the functionalities of traditional materials. Sound absorbing materials which are also tough and lightweight are of particular importance as practical engineering materials. There are however a lack of attempts on the study of metamaterials multifunctional for both purposes. Herein, we present four types of face-centered cubic based plate and truss microlattices as novel metamaterials with simultaneous excellent sound and mechanical energy absorption performance. High sound absorption coefficients nearing 1 and high specific energy absorption of 50.3 J g-1 have been measured. Sound absorption mechanisms of microlattices are proposed to be based on a "cascading resonant cells theory", an extension of the Helmholtz resonance principle that we have conceptualized herein. Characteristics of absorption coefficients are found to be essentially geometry limited by the pore and cavity morphologies. The excellent mechanical properties in turn derive from both the approximate membrane stress state of the plate architecture and the excellent ductility and strength of the base material. Overall, this work presents a new concept on the specific structural design and materials selection for architectured metamaterials with dual sound and mechanical energy absorption capabilities.

11.
Sensors (Basel) ; 21(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205808

RESUMEN

The aim of this study was to model and evaluate the Specific Energy Absorption Rate (SAR) values in humans in proximity to fixed multi-antenna I-RFID readers of passive tags under various scenarios mimicking exposure when they are incorporated in Real-Time Location Systems (RTLS), or used to monitor Personal Protective Equipment (PPE). The sources of the electromagnetic field (EMF) in the modelled readers were rectangular microstrip antennas at a resonance frequency in free space of 866 MHz from the ultra-high frequency (UHF) RFID frequency range of 865-868 MHz. The obtained results of numerical modelling showed that the SAR values in the body 5 cm away from the UHF RFID readers need consideration with respect to exposure limits set by international guidelines to prevent adverse thermal effects of exposure to EMF: when the effective radiated power exceeds 5.5 W with respect to the general public/unrestricted environments exposure limits, and with respect to occupational/restricted environments exposure limits, when the effective radiated power exceeds 27.5 W.


Asunto(s)
Equipo de Protección Personal , Dispositivo de Identificación por Radiofrecuencia , Campos Electromagnéticos , Humanos , Monitoreo Fisiológico
12.
Cellulose (Lond) ; 27(5): 2803-2816, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226243

RESUMEN

Low consistency (LC) refining of (chemi-)thermomechanical pulp (TMP) provides an energy efficient alternative to high consistency refining for pulp property development. However, the benefit of LC refining is often limited by excessive fibre shortening, lower tear strength and a reduction of bulk caused by the refining process. In this study, microfibres produced by LC refining of TMP and kraft pulp fibres were investigated for their reinforcement potential in high freeness mechanical pulp. Primary pulp at 645 mL Canadian Standard Freeness was LC refined to different energy targets as a baseline for mechanical and optical property development. In contrast, the same primary pulp was reinforced with different microfibre types in ratios that yielded the same specific energies of the baseline LC refined pulp. The study revealed that at equivalent energies, the addition of TMP microfibres to the high freeness primary pulp displayed tensile development identical to the LC refined pulp, with significantly improved tear and bulk. The addition of kraft microfibre to primary pulp produced the highest tensile and tear strength but compromised light scattering. Additionally, all microfibre composites showed improved elongation, as opposed to no notable change in elongation with conventional LC refining. This investigation proposes an alternative, cost-effective approach for developing high bulk, high strength mechanical pulp by limiting the extent of second stage refining and using LC refined microfibres for pulp reinforcement. The high tear-high bulk open construction of the composite paper is likely to benefit boxboard and packaging applications.

13.
Sensors (Basel) ; 20(24)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322725

RESUMEN

The aim of this study was to evaluate the absorption in a user's head of an electromagnetic field (EMF) emitted by the Wi-Fi and/or Bluetooth module of a wearable small Internet of Things (IoT) electronic device (emitting EMF of up to 100 mW), in order to test the hypothesis that EMF has an insignificant influence on humans, and to compare the levels of such EMF absorption in various scenarios when using this device. The modelled EMF source was a meandered inverted-F antenna (MIFA)-type antenna of the ESP32-WROOM-32 radio module used in wearable devices developed within the reported study. To quantify the EMF absorption, the specific energy absorption rate (SAR) values were calculated in a multi-layer ellipsoidal model of the human head (involving skin, fat, skull bones and brain layers). The obtained results show up to 10 times higher values of SAR from the MIFA located in the headband, in comparison to its location on the helmet. Only wearable IoT devices (similar in construction and way of use to the investigated device) emitting at below 3 mW equivalent isotropically radiated power (EIRP) from Wi-Fi/Bluetooth communications modules may be considered environmentally insignificant EMF sources.


Asunto(s)
Campos Electromagnéticos , Dispositivos Electrónicos Vestibles , Cabeza , Humanos , Internet , Lugar de Trabajo
14.
Molecules ; 25(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375316

RESUMEN

An overview of all the studies on high-pressure intrusion-extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical energy storage, absorption, and generation are described. The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure increases with the salt concentration and depends considerably on zeosil framework. In the case of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure on LiCl aqueous solutions intrusion-extrusion is also discussed.


Asunto(s)
Cloruro de Litio/química , Presión , Dióxido de Silicio/química , Zeolitas/química , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Tamaño de la Partícula , Soluciones , Agua/química
15.
J Sport Rehabil ; 30(1): 49-54, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131048

RESUMEN

CONTEXT: Joint loading following anterior cruciate ligament reconstruction (ACL-R) is thought to influence long-term outcomes. However, our understanding of the role of meniscus repair at the time of ACL-R on early joint loading is limited. OBJECTIVE: To assess if differences in total energy absorption and energy absorption contribution of the hip, knee, and ankle exist in the early stages of rehabilitation between patients who received an isolated ACL-R and those with concomitant meniscal repairs. DESIGN: Cross-sectional. SETTING: Clinical laboratory. PATIENTS: Fifty-nine human subjects, including 27 who underwent ACL-R and 32 who underwent ACL-R with concomitant meniscal repairs. MAIN OUTCOME MEASURE: The total energy absorption and the energy absorption contribution of each joint of both the involved and uninvolved limbs during a double-limb squat task. RESULTS: There were significant differences in energy absorption contribution between groups at the knee joint (P = .01) and the hip joint (P = .04), but not at the ankle joint (P = .48) of the involved limb. Post hoc analysis indicates that preoperative hip and knee loading differences exist and when you control for preoperative loading (analysis of covariance), the postsurgery difference was not significant. CONCLUSIONS: The results of the study suggest that the additional surgical procedure of MR may not have had negative effects on joint loading during squatting at 12 weeks.

16.
Small ; 15(45): e1903834, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31531942

RESUMEN

Nanolattices are promoted as next-generation multifunctional high-performance materials, but their mechanical response is limited to extreme strength yet brittleness, or extreme deformability but low strength and stiffness. Ideal impact protection systems require high-stress plateaus over long deformation ranges to maximize energy absorption. Here, glassy carbon nanospinodals, i.e., nanoarchitectures with spinodal shell topology, combining ultrahigh energy absorption and exceptional strength and stiffness at low weight are presented. Noncatastrophic deformation up to 80% strain, and energy absorption up to one order of magnitude higher than for other nano-, micro-, macro-architectures and solids, and state-of-the-art impact protection structures are shown. At the same time, the strength and stiffness are on par with the most advanced yet brittle nanolattices, demonstrating true multifunctionality. Finite element simulations show that optimized shell thickness-to-curvature-radius ratios suppress catastrophic failure by impeding propagation of dangerously oriented cracks. In contrast to most micro- and nano-architected materials, spinodal architectures may be easily manufacturable on an industrial scale, and may become the next generation of superior cellular materials for structural applications.

17.
Lasers Med Sci ; 34(8): 1575-1582, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31346825

RESUMEN

Intense pulsed light (IPL) has been used therapeutically in a number of clinical settings and has been shown to have a photobiomodulatory effect on connective tissue cells, such as those derived from skin and tendon. In vitro cell culture models are essential tools preclinically in investigating such treatment modalities, as they help in optimising parameters for successful treatment. However, as culture system components have been reported to absorb part of the irradiated energy, which in turn has a bearing on the amount of light reaching the cells, it is important to establish specific parameters for the particular in vitro model used. This study, therefore, investigates the effect of our tissue culture system components on the IPL energy delivered. Individual wells of multi-well plates were irradiated with IPL at different device settings and under variable culture conditions (e.g. in the absence or presence of cell culture media with or without the pH indicator dye, phenol red), and the energy lost through the culture system determined. Our data demonstrated that the IPL device delivered significantly lower outputs than those published, and energy absorption by the culture equipment would further reduce fluencies delivered to the cell monolayer. Furthermore, energy absorption by media containing phenol red was marginally greater than clear media and resulted in only a small increase in temperature, which would not be harmful to cells. The use of phenol red-containing media therefore is valid and physiologically relevant when examining light-culture system interactions.


Asunto(s)
Luz , Modelos Biológicos , Técnicas de Cultivo de Tejidos , Medios de Cultivo , Humanos , Fenolsulfonftaleína/química , Fototerapia/instrumentación
18.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905869

RESUMEN

The aim is to evaluate specific absorption rate (SAR) values from exposure near handheld ultra-high frequency radiofrequency identification readers (UHF RFID guns-small electronic devices, or even portable computers with relevant accessories-emitting up to several watts of electromagnetic field (EMF) to search for RFID sensors (tags) attached to marked objects), in order to test the hypothesis that they have an insignificant environmental influence. Simulations of SAR in adult male and female models in seven exposure scenarios (gun near the head, arm, chest, hip/thigh of the operator searching for tags, or near to the chest and arm of the scanned person or a bystander). The results showed EMF exposure compliant with SAR limits for general public exposure (ICNIRP/European Recommendation 1999/519/EC) at emissions up to 1 W (reading range 3.5-11 m, depending on tag sensitivity). In the worst-case scenario, guns with a reading range exceeding 5 m (>2 W emission) may cause an SAR exceeding the general public limits in the palm of the user and the torso of the user, a bystander, or a scanned person; occupational exposure limits may be exceeded when emission >5 W. Users of electronic medical implants and pregnant women should be treated as individuals at particular risk in close proximity to guns, even at emissions of 1 W. Only UHF RFID guns emitting below 1 W may be considered as environmentally insignificant EMF sources.

19.
Sensors (Basel) ; 19(17)2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466315

RESUMEN

The aim of this study was to model the absorption in the head of an electromagnetic field (EMF) emitted by a radiofrequency identification reader operating at a frequency of 13.56 MHz (recognized as an RFID HF reader), with respect to the direct biophysical effects evaluated by the specific absorption rate (SAR), averaged over the entire head or locally, over any 10 g of tissues. The exposure effects were compared between the head of a user of a hearing implant with an acoustic sensor and a person without such an implant, used as a referenced case. The RFID HF reader, such as is used in shops or libraries, was modeled as a loop antenna (35 × 35 cm). SAR was calculated in a multi-layer ellipsoidal model of the head-with or without models of hearing implants of two types: Bonebridge (MED-EL, Austria) or bone anchored hearing aid attract (BAHA) (Cochlear, Sweden). Relative SAR values were calculated as the ratio between the SAR in the head of the implant user and the non-user. It was found that the use of BAHA hearing implants increased the effects of 13.56 MHz EMF exposure in the head in comparison to non-user-up to 2.1 times higher localized SAR in the worst case exposure scenario, and it is statistically significant higher than when Bonebridge implants are used (Kruscal-Wallis test with Bonferroni correction, p < 0.017). The evaluation of EMF exposure from an RFID reader with respect to limits established for the implant non-user population may be insufficient to protect an implant user when exposure approaches these limits, but the significant difference between exposure effects in users of various types of implants need to be considered.


Asunto(s)
Campos Electromagnéticos , Cabeza/fisiología , Audífonos , Dispositivo de Identificación por Radiofrecuencia , Teléfono Celular , Humanos , Prótesis e Implantes
20.
J Therm Biol ; 74: 281-289, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29801639

RESUMEN

Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics.


Asunto(s)
Hipertermia Inducida/métodos , Neoplasias/química , Neoplasias/radioterapia , Termografía , Animales , Carcinoma de Células Escamosas/química , Carcinoma de Células Escamosas/radioterapia , Simulación por Computador , Xenoinjertos , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/radioterapia , Ratones , Modelos Biológicos , Ondas de Radio , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda