Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.609
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(15): 2678-2689, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35839759

RESUMEN

Metabolic anomalies contribute to tissue dysfunction. Current metabolism research spans from organelles to populations, and new technologies can accommodate investigation across these scales. Here, we review recent advancements in metabolic analysis, including small-scale metabolomics techniques amenable to organelles and rare cell types, functional screening to explore how cells respond to metabolic stress, and imaging approaches to non-invasively assess metabolic perturbations in diseases. We discuss how metabolomics provides an informative phenotypic dimension that complements genomic analysis in Mendelian and non-Mendelian disorders. We also outline pressing challenges and how addressing them may further clarify the biochemical basis of human disease.


Asunto(s)
Genómica , Metabolómica , Diagnóstico por Imagen , Humanos , Metabolómica/métodos
2.
Trends Biochem Sci ; 48(2): 106-118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36163144

RESUMEN

The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.


Asunto(s)
Mamíferos , Proteoma , Animales , Proteómica , Proteolisis
3.
Proc Natl Acad Sci U S A ; 121(10): e2304613121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408243

RESUMEN

Marine particulate organic carbon (POC) contributes to carbon export, food webs, and sediments, but uncertainties remain in its origins. Globally, variations in stable carbon isotope ratios (δ13C values) of POC between the upper and lower euphotic zones (LEZ) indicate either varying aspects of photosynthetic communities or degradative alteration of POC. During summertime in the subtropical north Atlantic Ocean, we find that δ13C values of the photosynthetic product phytol decreased by 6.3‰ and photosynthetic carbon isotope fractionation (εp) increased by 5.6‰ between the surface and the LEZ-variation as large as that found in the geologic record during major carbon cycle perturbations, but here reflecting vertical variation in δ13C values of photosynthetic communities. We find that simultaneous variations in light intensity and phytoplankton community composition over depth may be important factors not fully accounted for in common models of photosynthetic carbon isotope fractionation. Using additional isotopic and cell count data, we estimate that photosynthetic and non-photosynthetic material (heterotrophs or detritus) contribute relatively constant proportions of POC throughout the euphotic zone but are isotopically more distinct in the LEZ. As a result, the large vertical differences in εp result in significant, but smaller, differences in the δ13C values of total POC across the same depths (2.7‰). Vertical structuring of photosynthetic communities and export potential from the LEZ may vary across current and past ocean ecosystems; thus, LEZ photosynthesis may influence the exported and/or sedimentary δ13C values of both phytol and total organic carbon and affect interpretations of εp over geologic time.


Asunto(s)
Carbono , Ecosistema , Isótopos de Carbono/análisis , Fotosíntesis , Fitol , Océanos y Mares
4.
Proc Natl Acad Sci U S A ; 121(25): e2319960121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865268

RESUMEN

Nitrous oxide (N2O), a potent greenhouse gas, can be generated by multiple biological and abiotic processes in diverse contexts. Accurately tracking the dominant sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used toward this end, as bacterial and fungal nitric oxide reductases (NORs) produce N2O with different isotopic fingerprints, spanning a large range. Here, we show that flavohemoglobin (Fhp), a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions (~+10‰) that correlates with typical environmental N2O SP measurements. Using Pseudomonas aeruginosa as a model organism, we generated strains that only contained Fhp or the dissimilatory NOR, finding that in vivo N2O SP values imparted by these enzymes differ by over 10‰. Depending on the cellular physiological state, the ratio of Fhp:NOR varies significantly in wild-type cells and controls the net N2O SP biosignature: When cells grow anaerobically under denitrifying conditions, NOR dominates; when cells experience rapid, increased nitric oxide concentrations under anoxic conditions but are not growing, Fhp dominates. Other bacteria that only make Fhp generate similar N2O SP biosignatures to those measured from our P. aeruginosa Fhp-only strain. Fhp homologs in sequenced bacterial genomes currently exceed NOR homologs by nearly a factor of four. Accordingly, we suggest a different framework to guide the attribution of N2O biological sources in nature and disease.


Asunto(s)
Óxido Nitroso , Oxidorreductasas , Pseudomonas aeruginosa , Óxido Nitroso/metabolismo , Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Anaerobiosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Óxido Nítrico/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(7): e2309131121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315852

RESUMEN

Most of the nitrogen (N) accessible for life is trapped in dinitrogen (N2), the most stable atmospheric molecule. In order to be metabolized by living organisms, N2 has to be converted into biologically assimilable forms, so-called fixed N. Nowadays, nearly all the N-fixation is achieved through biological and anthropogenic processes. However, in early prebiotic environments of the Earth, N-fixation must have occurred via natural abiotic processes. One of the most invoked processes is electrical discharges, including from thunderstorms and lightning associated with volcanic eruptions. Despite the frequent occurrence of volcanic lightning during explosive eruptions and convincing laboratory experimentation, no evidence of substantial N-fixation has been found in any geological archive. Here, we report on the discovery of a significant amount of nitrate in volcanic deposits from Neogene caldera-forming eruptions, which are well correlated with the concentrations of species directly emitted by volcanoes (sulfur, chlorine). The multi-isotopic composition (δ18O, Δ17O) of the nitrates reveals that they originate from the atmospheric oxidation of nitrogen oxides formed by volcanic lightning. According to these first geological volcanic nitrate archive, we estimate that, on average, about 60 Tg of N can be fixed during a large explosive event. Our findings hint at a unique role potentially played by subaerial explosive eruptions in supplying essential ingredients for the emergence of life on Earth.

6.
Proc Natl Acad Sci U S A ; 121(17): e2321616121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635630

RESUMEN

Experimental results are presented showing the variation in the relationship between odd isotopes of tin (Sn) in mass-independent fractionation caused by the magnetic isotope effect (MIE), which has previously only been observed for mercury. These results are consistent with the trend predicted from the difference between the magnitudes of nuclear magnetic moments of odd isotopes with a nuclear spin. However, the correlation between odd isotopes in fractionation induced by the MIE for the reaction system used in this study (solvent extraction using a crown ether) was different from that reported for the photochemical reaction of methyltin. This difference between the two reaction systems is consistent with a theoretical prediction that the correlation between odd isotopes in fractionation induced by the MIE is controlled by the relationship between the spin conversion time and radical lifetime. The characteristic changes in the correlation between odd isotopes in fractionation induced by the MIE observed for Sn in this study provide a guideline for quantitatively determining fractionation patterns caused by the MIE for elements that have multiple isotopes with a nuclear spin. These results improve our understanding of the potential impact of the MIE on mass-independent fractionation observed in natural samples, such as meteorites, and analytical artifacts of high-precision isotope analysis for heavy elements.

7.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527200

RESUMEN

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

8.
Bioessays ; 46(1): e2300152, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888800

RESUMEN

Mechanisms occurring at the atomic level are now known to drive processes essential for life, as revealed by quantum effects on biochemical reactions. Some macroscopic characteristics of organisms may thus show an atomic imprint, which may be transferred across organisms and affect their evolution. This possibility is considered here for the first time, with the aim of elucidating the appearance of an animal innovation with an unclear evolutionary origin: migratory behaviour. This trait may be mediated by a radical pair (RP) mechanism in the retinal flavoprotein cryptochrome, providing essential magnetic orientation for migration. Isotopes may affect the performance of quantum processes through their nuclear spin. Here, we consider a simple model and then apply the standard open quantum system approach to the spin dynamics of cryptochrome RP. We changed the spin quantum number (I) and g-factor of hydrogen and nitrogen isotopes to investigate their effect on RP's yield and magnetic sensitivity. Strong differences arose between isotopes with I = 1 and I = 1/2 in their contribution to cryptochrome magnetic sensitivity, particularly regarding Earth's magnetic field strengths (25-65 µT). In most cases, isotopic substitution improved RP's magnetic sensitivity. Migratory behaviour may thus have been favoured in animals with certain isotopic compositions of cryptochrome.


Asunto(s)
Migración Animal , Criptocromos , Animales , Criptocromos/química , Campos Magnéticos , Aves , Isótopos , Biología
9.
Proc Natl Acad Sci U S A ; 120(4): e2209480119, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649403

RESUMEN

Around 10,000 y ago in southwest Asia, the cessation of a mobile lifestyle and the emergence of the first village communities during the Neolithic marked a fundamental change in human history. The first communities were small (tens to hundreds of individuals) but remained semisedentary. So-called megasites appeared soon after, occupied by thousands of more sedentary inhabitants. Accompanying this shift, the material culture and ancient ecological data indicate profound changes in economic and social behavior. A shift from residential to logistical mobility and increasing population size are clear and can be explained by either changes in fertility and/or aggregation of local groups. However, as sedentism increased, small early communities likely risked inbreeding without maintaining or establishing exogamous relationships typical of hunter-gatherers. Megasites, where large populations would have made endogamy sustainable, could have avoided this risk. To examine the role of kinship practices in the rise of megasites, we measured strontium and oxygen isotopes in tooth enamel from 99 individuals buried at Pinarbasi, Boncuklu, and Çatalhöyük (Turkey) over 7,000 y. These sites are geographically proximate and, critically, span both early sedentary behaviors (Pinarbasi and Boncuklu) and the rise of a local megasite (Çatalhöyük). Our data are consistent with the presence of only local individuals at Pinarbasi and Boncuklu, whereas at Çatalhöyük, several nonlocals are present. The Çatalhöyük data stand in contrast to other megasites where bioarchaeological evidence has pointed to strict endogamy. These different kinship behaviors suggest that megasites may have arisen by employing unique, community-specific kinship practices.


Asunto(s)
Estilo de Vida , Conducta Social , Humanos , Historia Antigua , Turquía , Estroncio , Conducta Sedentaria
10.
Proc Natl Acad Sci U S A ; 120(20): e2300466120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155899

RESUMEN

The history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO2 is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record. Therefore, we measured both biomass (εp) and enzymatic (εRubisco) carbon isotope fractionations of a cyanobacterial strain (Synechococcus elongatus PCC 7942) solely expressing a putative ancestral Form 1B rubisco dating to ≫1 Ga. This strain, nicknamed ANC, grows in ambient pCO2 and displays larger εp values than WT, despite having a much smaller εRubisco (17.23 ± 0.61‰ vs. 25.18 ± 0.31‰, respectively). Surprisingly, ANC εp exceeded ANC εRubisco in all conditions tested, contradicting prevailing models of cyanobacterial carbon isotope fractionation. Such models can be rectified by introducing additional isotopic fractionation associated with powered inorganic carbon uptake mechanisms present in Cyanobacteria, but this amendment hinders the ability to accurately estimate historical pCO2 from geological data. Understanding the evolution of rubisco and the CO2 concentrating mechanism is therefore critical for interpreting the carbon isotope record, and fluctuations in the record may reflect the evolving efficiency of carbon fixing metabolisms in addition to changes in atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Isótopos de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Fotosíntesis
11.
Proc Natl Acad Sci U S A ; 120(20): e2204501120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155903

RESUMEN

Understanding mobility and landscape use is important in reconstructing subsistence behavior, range, and group size, and it may contribute to our understanding of phenomena such as the dynamics of biological and cultural interactions between distinct populations of Upper Pleistocene humans. However, studies using traditional strontium isotope analysis are generally limited to identifying locations of childhood residence or nonlocal individuals and lack the sampling resolution to detect movement over short timescales. Here, using an optimized methodology, we present highly spatially resolved 87Sr/86Sr measurements made by laser ablation multicollector inductively coupled plasma mass spectrometry along the growth axis of the enamel of two marine isotope stage 5b, Middle Paleolithic Neanderthal teeth (Gruta da Oliveira), a Tardiglacial, Late Magdalenian human tooth (Galeria da Cisterna), and associated contemporaneous fauna from the Almonda karst system, Torres Novas, Portugal. Strontium isotope mapping of the region shows extreme variation in 87Sr/86Sr, with values ranging from 0.7080 to 0.7160 over a distance of c. 50 km, allowing short-distance (and arguably short-duration) movement to be detected. We find that the early Middle Paleolithic individuals roamed across a subsistence territory of approximately 600 km2, while the Late Magdalenian individual parsimoniously fits a pattern of limited, probably seasonal movement along the right bank of the 20-km-long Almonda River valley, between mouth and spring, exploiting a smaller territory of approximately 300 km2. We argue that the differences in territory size are due to an increase in population density during the Late Upper Paleolithic.


Asunto(s)
Hominidae , Terapia por Láser , Hombre de Neandertal , Diente , Animales , Humanos , Portugal , Diente/química , Isótopos de Estroncio/análisis , Estroncio/análisis
12.
Proc Natl Acad Sci U S A ; 120(35): e2302048120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603738

RESUMEN

Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.

13.
Proc Natl Acad Sci U S A ; 120(2): e2215882120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595666

RESUMEN

Holocene climate in the high tropical Andes was characterized by both gradual and abrupt changes, which disrupted the hydrological cycle and impacted landscapes and societies. High-resolution paleoenvironmental records are essential to contextualize archaeological data and to evaluate the sociopolitical response of ancient societies to environmental variability. Middle-to-Late Holocene water levels in Lake Titicaca were reevaluated through a transfer function model based on measurements of organic carbon stable isotopes, combined with high-resolution profiles of other geochemical variables and paleoshoreline indicators. Our reconstruction indicates that following a prolonged low stand during the Middle Holocene (4000 to 2400 BCE), lake level rose rapidly ~15 m by 1800 BCE, and then increased another 3 to 6 m in a series of steps, attaining the highest values after ~1600 CE. The largest lake-level increases coincided with major sociopolitical changes reported by archaeologists. In particular, at the end of the Formative Period (500 CE), a major lake-level rise inundated large shoreline areas and forced populations to migrate to higher elevation, likely contributing to the emergence of the Tiwanaku culture.


Asunto(s)
Clima , Lagos , Lagos/química , Agua
14.
Proc Natl Acad Sci U S A ; 120(11): e2220563120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893277

RESUMEN

The transition from mafic to felsic upper continental crust (UCC) is crucial to habitability of Earth, and may be related to the onset of plate tectonics. Thus, defining when this crustal transition occurred has great significance for the evolution of Earth and its inhabitants. We demonstrate that V isotope ratios (reported as δ51V) provide insights into this transition because they correlate positively with SiO2 and negatively with MgO contents during igneous differentiation in both subduction zones and intraplate settings. Because δ51V is not affected by chemical weathering and fluid-rock interactions, δ51V of the fine-grained matrix of Archean to Paleozoic (3 to 0.3 Ga) glacial diamictite composites, which sample the UCC at the time of glaciation, reflect the chemical composition of the UCC through time. The δ51V values of glacial diamictites systematically increase with time, indicating a dominantly mafic UCC at ~3 Ga; the UCC was dominated by felsic rocks only after 3 Ga, coinciding with widespread continental emergence and many independent estimates for the onset of plate tectonics.

15.
Proc Natl Acad Sci U S A ; 120(46): e2306736120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931112

RESUMEN

Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R-O-CH3) in wood. Most methoxyl C-H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue 13CH2D correlates with temperature (18-28 °C) and atmospheric [CO2] (280-1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.

16.
Proc Natl Acad Sci U S A ; 120(27): e2218153120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364100

RESUMEN

The evolution of the extinct megatooth shark, Otodus megalodon, and its close phylogenetic relatives remains enigmatic. A central question persists regarding the thermophysiological origins of these large predatory sharks through geologic time, including whether O. megalodon was ectothermic or endothermic (including regional endothermy), and whether its thermophysiology could help to explain the iconic shark's gigantism and eventual demise during the Pliocene. To address these uncertainties, we present unique geochemical evidence for thermoregulation in O. megalodon from both clumped isotope paleothermometry and phosphate oxygen isotopes. Our results show that O. megalodon had an overall warmer body temperature compared with its ambient environment and other coexisting shark species, providing quantitative and experimental support for recent biophysical modeling studies that suggest endothermy was one of the key drivers for gigantism in O. megalodon and other lamniform sharks. The gigantic body size with high metabolic costs of having high body temperatures may have contributed to the vulnerability of Otodus species to extinction when compared to other sympatric sharks that survived the Pliocene epoch.


Asunto(s)
Gigantismo , Tiburones , Animales , Tiburones/fisiología , Filogenia , Regulación de la Temperatura Corporal/fisiología , Tamaño Corporal
17.
Proc Natl Acad Sci U S A ; 120(1): e2206742119, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574665

RESUMEN

The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by > 60 m, an uncertainty comparable to the sea-level equivalent of the contemporary Antarctic Ice Sheet. Here, we constrain sea level prior to the LGM by reconstructing the flooding history of the shallow Bering Strait since 46 ka. Using a geochemical proxy of Pacific nutrient input to the Arctic Ocean, we find that the Bering Strait was flooded from the beginning of our records at 46 ka until [Formula: see text] ka. To match this flooding history, our sea-level model requires an ice history in which over 50% of the LGM's global peak ice volume grew after 46 ka. This finding implies that global ice volume and climate were not linearly coupled during the last ice age, with implications for the controls on each. Moreover, our results shorten the time window between the opening of the Bering Land Bridge and the arrival of humans in the Americas.


Asunto(s)
Clima , Cubierta de Hielo , Humanos , Regiones Antárticas , Regiones Árticas
18.
Proc Natl Acad Sci U S A ; 120(23): e2219688120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252961

RESUMEN

Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich "veils" descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface-dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.

19.
Proc Natl Acad Sci U S A ; 120(4): e2210611120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649412

RESUMEN

Growing reliance on animal and plant domestication in the Near East and beyond during the Pre-Pottery Neolithic B (PPNB) (the ninth to eighth millennium BC) has often been associated with a "revolutionary" social transformation from mobility toward more sedentary lifestyles. We are able to yield nuanced insights into the process of the Neolithization in the Near East based on a bioarchaeological approach integrating isotopic and archaeogenetic analyses on the bone remains recovered from Nevali Çori, a site occupied from the early PPNB in Turkey where some of the earliest evidence of animal and plant domestication emerged, and from Ba'ja, a typical late PPNB site in Jordan. In addition, we present the archaeological sequence of Nevali Çori together with newly generated radiocarbon dates. Our results are based on strontium (87Sr/86Sr), carbon, and oxygen (δ18O and δ13Ccarb) isotopic analyses conducted on 28 human and 29 animal individuals from the site of Nevali Çori. 87Sr/86Sr results indicate mobility and connection with the contemporaneous surrounding sites during the earlier PPNB prior to an apparent decline in this mobility at a time of growing reliance on domesticates. Genome-wide data from six human individuals from Nevali Çori and Ba'ja demonstrate a diverse gene pool at Nevali Çori that supports connectedness within the Fertile Crescent during the earlier phases of Neolithization and evidence of consanguineous union in the PPNB Ba'ja and the Iron Age Nevali Çori.


Asunto(s)
Carbono , Domesticación , Animales , Humanos , Historia Antigua , Turquía , Jordania , Arqueología , ADN
20.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36857618

RESUMEN

The use of stable isotope tracers and mass spectrometry (MS) is the gold standard method for the analysis of fatty acid (FA) metabolism. Yet, current state-of-the-art tools provide limited and difficult-to-interpret information about FA biosynthetic routes. Here we present FAMetA, an R package and a web-based application (www.fameta.es) that uses 13C mass isotopologue profiles to estimate FA import, de novo lipogenesis, elongation and desaturation in a user-friendly platform. The FAMetA workflow covers the required functionalities needed for MS data analyses. To illustrate its utility, different in vitro and in vivo experimental settings are used in which FA metabolism is modified. Thanks to the comprehensive characterization of FA biosynthesis and the easy-to-interpret graphical representations compared to previous tools, FAMetA discloses unnoticed insights into how cells reprogram their FA metabolism and, when combined with FASN, SCD1 and FADS2 inhibitors, it enables the identification of new FAs by the metabolic reconstruction of their synthesis route.


Asunto(s)
Metabolismo de los Lípidos , Lipogénesis , Espectrometría de Masas/métodos , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda