Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Trends Immunol ; 43(10): 833-847, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058806

RESUMEN

Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.


Asunto(s)
Interleucina-15 , Neoplasias , Citocinas , Humanos , Inmunoterapia , Células Asesinas Naturales , Neoplasias/terapia
2.
Mol Ther ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879754

RESUMEN

Despite the remarkable success of chimeric antigen receptor (CAR) T therapy in hematological malignancies, its efficacy in solid tumors remains limited. Cytokine-engineered CAR T cells offer a promising avenue, yet their clinical translation is hindered by the risks associated with constitutive cytokine expression. In this proof-of-concept study, we leverage the endogenous interferon (IFN)-γ promoter for transgenic interleukin (IL)-15 expression. We demonstrate that IFN-γ expression is tightly regulated by T cell receptor signaling. By introducing an internal ribosome entry site IL15 into the 3' UTR of the IFN-γ gene via homology directed repair-mediated knock-in, we confirm that IL-15 expression can co-express with IFN-γ in an antigen stimulation-dependent manner. Importantly, the insertion of transgenes does not compromise endogenous IFN-γ expression. In vitro and in vivo data demonstrate that IL-15 driven by the IFN-γ promoter dramatically improves CAR T cells' antitumor activity, suggesting the effectiveness of IL-15 expression. Last, as a part of our efforts toward clinical translation, we have developed an innovative two-gene knock-in approach. This approach enables the simultaneous integration of CAR and IL-15 genes into TRAC and IFN-γ gene loci using a single AAV vector. CAR T cells engineered to express IL-15 using this approach demonstrate enhanced antitumor efficacy. Overall, our study underscores the feasibility of utilizing endogenous promoters for transgenic cytokines expression in CAR T cells.

3.
Am J Physiol Endocrinol Metab ; 326(3): E326-E340, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294696

RESUMEN

This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.


Asunto(s)
Interleucina-15 , Músculo Esquelético , Ratones , Masculino , Animales , Interleucina-15/genética , Interleucina-15/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Ratones Transgénicos , Ratones Noqueados , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia
4.
Future Oncol ; : 1-11, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953850

RESUMEN

WHAT IS THIS SUMMARY ABOUT?: This is a summary of two studies that looked at the safety and effectiveness of a potential new treatment, N-803 (Anktiva), in combination with a standard treatment bacillus Calmette-Guerin (BCG) for people with non-muscle invasive bladder cancer (NMIBC).One study was a Phase 1b study that tested increasing doses of N-803 in combination with the same dose of BCG in people with NMIBC who had never received BCG previously (BCG-naive). The other study is a Phase 2/3 study of N-803 and BCG in people with NMIBC whose cancer wasn't eliminated by BCG alone (BCGunresponsive). WHAT HAPPENED IN THE STUDIES?: In the Phase 1b study, the nine participants were split into three groups of 3 participants who received a dose of 100, 200, or 400 µg N-803 along with a standard 50 mg dose of BCG. In the Phase 2/3 study, one group (cohort A) of participants with carcinoma in situ (CIS) disease and another group (cohort B) with papillary disease were treated with 400 µg N-803 plus 50 mg BCG. There was also a cohort C that received only 400 µg N-803. Treatments were delivered directly into the bladder once a week for 6 weeks in a row. WHAT WERE THE KEY TAKEAWAYS?: N-803 plus BCG eliminated NMIBC in all nine BCG-naive participants and the effects were long-lasting, with participants remaining NMIBC-free for a range of 8.3 to 9.2 years.As reported in 2022, cancer was eliminated in 58 of 82 (71%) participants with BCG-unresponsive CIS disease and the effect was also long-lasting. Importantly, approximately 90% of the successfully treated participants avoided surgical removal of the bladder. In cohort B participants with papillary disease, 40 of 72 (55.4%) were cancer-free 12 months after treatment. N-803 used alone was only effective in 2 of 10 participants. In both studies, the combination of N-803 and BCG was found to be associated with very few adverse events.Based on results from the Phase 2/3 study, the U.S. Food and Drug Association (FDA) approved the use of N-803 plus BCG for the treatment of BCG-unresponsive bladder CIS with or without Ta/T1 papillary disease.Clinical Trial Registration: NCT02138734 (Phase 1b study), NCT03022825 (Phase 2/3 study).


Addition of the IL-15 superagonist N-803 to BCG therapy produces a high rate of success in eliminating non-muscle invasive bladder cancer in both BCG-naive and BCG-unresponsive patients, with long-lasting effects that allow patients to avoid surgical removal of the bladder.

5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338686

RESUMEN

GT-00AxIL15 is a novel interleukin-15-based immunocytokine targeting a tumor-specific, glycosylated epitope of MUC1 (TA-MUC1). We characterized mode of action, pharmacokinetic (PK) and pharmacodynamic (PD) properties and investigated the relevance of TA-MUC1 binding for the concept of delivering IL-15 to solid tumors. In vitro pharmacology was analyzed in binding and cell-based assays. The in vivo PK profile and IL-15-mediated PD effects of GT-00AxIL15 were investigated in tumor-free mice. Tumor accumulation, immune infiltration and anti-tumor activity were assessed in TA-MUC1+ syngeneic and xenogeneic murine tumor models. GT-00AxIL15 was shown to specifically bind TA-MUC1 on tumor cells via its mAb moiety, to IL-15 receptors on immune cells via its IL-15 fusion modules and to FcγRs via its functional Fc-part. In vitro, NK, NKT and CD8+ T cells were activated and proliferated, leading to anti-tumor cytotoxicity and synergism with antibody-dependent cellular cytotoxicity (ADCC)-mediating mAbs. In vivo, GT-00AxIL15 exhibited favorable PK characteristics with a serum half-life of 13 days and specifically accumulated in TA-MUC1+ tumors. In the tumor microenvironment, GT-00AxIL15 induced robust immune activation and expansion and mediated anti-metastatic and anti-tumor effects in syngeneic and xenograft tumor models. These results support the rationale to improve PK and anti-tumor efficacy of IL-15 by increasing local concentrations at the tumor site via conjugation to a TA-MUC1 binding mAb. The tumor-selective expression pattern of TA-MUC1, powerful immune activation and anti-tumor cytotoxicity, long serum half-life and tumor targeting properties, render GT-00AxIL15 a promising candidate for treatment of solid tumors with high medical need, e.g., ovarian, lung and breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias de la Mama , Interleucina-15 , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/metabolismo , Neoplasias de la Mama/metabolismo , Modelos Animales de Enfermedad , Interleucina-15/metabolismo , Mucina-1/metabolismo , Distribución Tisular , Microambiente Tumoral , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673994

RESUMEN

Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-ß (TGF-ß), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/ß-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.


Asunto(s)
Alopecia Areata , Vitíligo , Alopecia Areata/inmunología , Alopecia Areata/patología , Alopecia Areata/etiología , Alopecia Areata/metabolismo , Humanos , Vitíligo/inmunología , Vitíligo/patología , Vitíligo/metabolismo , Vitíligo/etiología , Animales , Privilegio Inmunológico , Citocinas/metabolismo
7.
Immunol Cell Biol ; 101(9): 847-856, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37585342

RESUMEN

Artificial antigen-presenting cells (aAPCs) offer a cost effective and convenient tool for the expansion of chimeric antigen receptor (CAR)-bearing T cells and NK cells. aAPCs are particularly useful because of their ability to efficiently expand low-frequency antigen-reactive lymphocytes in bulk cultures. Commonly derived from the leukemic cell line K562, these aAPCs lack most major histocompatibility complex expression and are therefore useful for NK cell expansion without triggering allogeneic T-cell proliferation. To combat difficulties in accessing existing aAPC lines, while circumventing the iterative lentiviral gene transfers with antibody-mediated sorting required for the isolation of stable aAPC clones, we developed a single-step technique using Sleeping Beauty (SB)-based vectors with antibiotic selection options. Our SB vectors contain options of two to three genes encoding costimulatory molecules, membrane-bound cytokines as well as the presence of antibiotic-resistance genes that allow for stable transposition-based transfection of feeder cells. Transfection of K562 with SB vectors described in this study allows for the surface expression of CD86, 4-1BBL, membrane-bound (mb) interleukin (IL)-15 and mbIL-21 after simultaneous transposition and antibiotic selection using only two antibiotics. aAPCs successfully expanded NK cells to high purity (80-95%). Expanded NK cells could be further engineered by lentiviral CAR transduction. The multivector kit set is publicly available and will allow convenient and reproducible in-house production of effective aAPCs for the in vitro expansion of primary cells.


Asunto(s)
Inmunoterapia Adoptiva , Linfocitos T , Inmunoterapia Adoptiva/métodos , Células Presentadoras de Antígenos/metabolismo , Células Asesinas Naturales , Proliferación Celular , Antibacterianos/metabolismo
8.
Cytokine ; 169: 156277, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348189

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and a syndrome shaped by pathogen and host factors evolving over time. During sepsis, the absolute number of lymphocytes decreases. CD4+ and CD8+ T cells, B cells, and NK cells are reduced. Lymphocytes are an essential element of the body's defence against pathogens. Interleukin 7 has strong anti-apoptotic properties and induces the proliferation of CD4+ and CD8+ T lymphocytes. IL-15 prompts the generation of mature NK cells in the bone marrow, plays an important role in the generation, cytotoxicity, and survival of CD8+ T lymphocytes, and is essential for the survival of natural killer T (NKT) and intestinal intraepithelial lymphocytes (IELs). The study highlights the importance of monitoring IL-7 levels in patients with sepsis and septic shock, as low levels of this cytokine were associated with an increased risk of mortality. Physicians should consider using IL-7 levels as a biomarker to identify patients who are at higher risk of mortality and may require more aggressive treatment.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Interleucina-7 , Interleucina-15 , Pronóstico , Biomarcadores
9.
Exp Cell Res ; 418(1): 113215, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35605650

RESUMEN

Preeclampsia (PE) is a pregnancy-associated complication accompanied by gestational hypertension and proteinuria, affecting 2-8% of pregnancies globally. The placental trophoblast cell invasion of decidua and myometrium during early gestation is crucial for healthy placentation. Thus, trophoblast dysfunction might contribute to PE onset. Therefore, further investigations are needed to elucidate the underlying mechanism of trophoblast cell functions. In the present study, we identified a novel pseudogene named C-Type Lectin Domain Family 4 Member G Pseudogene 1 (CLEC4GP1), which was aberrantly expressed in PE placental tissues. In vitro analyses showed that CLEC4GP1 overexpression significantly increased the cell viability and invasiveness and decreased the apoptosis rate of HTR-8/SVneo and JEG-3 cells, while CLEC4GP1 knockdown exerted opposite effects, suggesting the beneficial role of CLEC4GP1 in trophoblast cells. Next, co-expression analysis found that CLEC4GP1 was negatively correlated with Interleukin 15 (IL-15). The expression of IL-15 dramatically increased in PE placental tissues. In HTR-8/SVneo and JEG-3 cells, IL-15 exhibited detrimental effects, opposite to CLEC4GP1, and they were negatively correlated. In addition, CLEC4GP1 attenuates the mRNA stability of IL-16 by inhibiting the binding between human antigen R (HuR) protein and IL-15 RNA. Finally, the obverse effects of CLEC4GP1 and IL-15 were investigated, and results showed that IL-15 reverted CLEC4GP1 induced cellular functions. In brief, these data suggest that CLEC4GP1/IL-15 axis might modulate the occurrence and progression of PE via influencing the trophoblast cell viability, apoptosis, and invasive capability. This study provided cognizance of targeting the CLEC4GP1/IL-15 axis as a novel therapeutic approach to mitigate PE progression.


Asunto(s)
Preeclampsia , Trofoblastos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Humanos , Interleucina-15/genética , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Seudogenes/genética , Trofoblastos/metabolismo
10.
Appl Microbiol Biotechnol ; 107(10): 3217-3227, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37058229

RESUMEN

Being an important immune stimulant of T lymphocytes and NK cells, the recombinant human interleukin-15 (rhIL-15) has been extensively researched in tumor immunotherapy or as a vaccine adjuvant. However, the rhIL-15 manufacturing level lags far behind its growing clinical demand due to the lack of efficient and exact analysis methodologies to characterize the trace by-products, typically redox and deamidation. In order to improve the production and quality control of rhIL-15, here we developed an expanded resolution reverse-phase high-performance liquid chromatography (ExRP-HPLC) approach to quickly and accurately analyze the oxidation and reduction by-products of rhIL-15, which may appear during the purification processes. Firstly, we developed RP-HPLC methods which can separate rhIL-15 fractions with different levels of oxidization or reduction, respectively, and the redox status of each peak was then determined by measuring the intact mass with a high-resolution mass spectrometer (UPLC-MS). To further clarify the complex pattern of oxidization of specific residues, the peaks with various oxidation levels were digested into pieces for peptide mapping to pinpoint the exact changes of oxygen and hydrogen atoms in the rhIL-15 by-products. In addition, we performed the ExRP-HPLC and UPLC-MS analysis of partially deamidated rhIL-15 to characterize their oxidation and reduction. Our work is the first in-depth characterization of the redox by-products of rhIL-15, even for deamidated impurities. The ExRP-HPLC method we reported can facilitate the rapid and accurate quality analysis of rhIL-15, which is substantially helpful for streamlining the industrial manufacturing of rhIL-15 to better meet the demands of clinical applications. KEYPOINTS: • The oxidization and reduction rhIL-15 by-products were characterized for the first time. • The changes of oxygen and hydrogen atoms in rhIL-15 redox by-products were accurately determined by UPLC-MS. • Oxidation and reduction by-products of deamidated rhIL-15 were further analyzed.


Asunto(s)
Interleucina-15 , Espectrometría de Masas en Tándem , Humanos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Interleucina-2/química
11.
Mol Ther ; 30(12): 3552-3569, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821634

RESUMEN

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.


Asunto(s)
Factor VIII , Interleucina-15 , Ratones , Animales , Factor VIII/genética , Interleucina-15/genética , Sirolimus/farmacología
12.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895160

RESUMEN

Celiac disease (CD) presents a complex interplay of both innate and adaptive immune responses that drive a variety of pathological manifestations. Recent studies highlight the role of immune-mediated pathogenesis, pinpointing the involvement of antibodies against tissue transglutaminases (TG2, TG3, TG6), specific HLA molecules (DQ2/8), and the regulatory role of interleukin-15, among other cellular and molecular pathways. These aspects illuminate the systemic nature of CD, reflecting its wide-reaching impact that extends beyond gastrointestinal symptoms to affect other physiological systems and giving rise to a range of pathological landscapes, including refractory CD (RCD) and, in severe cases, enteropathy-associated T cell lymphoma. The existing primary therapeutic strategy, a gluten-free diet (GFD), poses significant challenges, such as low adherence rates, necessitating alternative treatments. Emerging therapies target various stages of the disease pathology, from preventing immunogenic gluten peptide absorption to enhancing intestinal epithelial integrity and modulating the immune response, heralding potential breakthroughs in CD management. As the understanding of CD deepens, novel therapeutic avenues are emerging, paving the way for more effective and sophisticated treatment strategies with the aim of enhancing the quality of life of CD patients. This review aims to delineate the immunopathology of CD and exploring its implications on other systems, its complications and the development of novel treatments.


Asunto(s)
Enfermedad Celíaca , Humanos , Calidad de Vida , Glútenes , Dieta Sin Gluten , Anticuerpos
13.
J Cell Mol Med ; 26(7): 1955-1968, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35174623

RESUMEN

Nab-paclitaxel (Abraxane), which is a nanoparticle form of albumin-bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15-ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15-ABD best suppressed tumour growth and produced a 40%-60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon-γ (IFN-γ)-secreting CD8+ T cells and CD11b+ CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+ IFN-γ+ T cells and a 0.47% reduction in CD4+ CD25+ FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15-ABD effectively suppressed NF-κB-mediated immune suppressive markers, including indoleamine 2,3-dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15-ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Paclitaxel Unido a Albúmina/farmacología , Paclitaxel Unido a Albúmina/uso terapéutico , Albúminas/uso terapéutico , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Humanos , Interleucina-15 , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Microambiente Tumoral
14.
J Transl Med ; 20(1): 432, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167591

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapy is a powerful adoptive immunotherapy against both B-cell malignancies and some types of solid tumors. Interleukin (IL) -15 is an important immune stimulator that may provide ideal long-term persistent CAR-T cells. However, higher base line or peak serum IL-15 levels are also related to severe toxicity, such as cytokine release syndrome (CRS), graft-versus-host disease (GVHD), and neurotoxicity. METHODS: We successfully constructed CD19 specific armored CAR-T cells overexpressing IL-I5 and IL-15 receptor alpha (IL-15Ra). In vitro cell differentiation and viability were monitored by flow cytometry, and an in vivo xenograft mouse models was used to evaluate the anti-tumor efficiency and liver damage of CAR-T cells. RESULTS: CAR-T cells overexpressing IL-15 alone demonstrated enhanced viability, retarded exhaustion in vitro and superior tumor-inhibitory effects in vivo. However, these tumor-free mice had lower survival rates, with serious liver injuries, as a possible result of toxicity. As expected, CAR-T cells overexpressing IL-15 combined with IL-15Ra had reduced CD132 expression and released fewer cytokines (IFNγ, IL-2 and IL-15) in vitro, as well as had the tendency to improve mouse survival via repressing the growth of tumor cells and keeping livers healthier compared to CAR-IL-15 T cells. CONCLUSIONS: These results indicated the importance of IL-15 in enhancing T cells persistence and IL-15Ra in reducing the adverse effects of IL-15, with superior tumor retardation during CAR-T therapy. This study paves the way for the rapid exploitation of IL-15 in adoptive cell therapy in the future.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Animales , Citocinas/metabolismo , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Interleucina-15 , Subunidad alfa del Receptor de Interleucina-15 , Interleucina-2 , Ratones , Neoplasias/terapia
15.
Diabetes Metab Res Rev ; 38(3): e3511, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34748681

RESUMEN

PURPOSE: Subclinical systemic inflammation may lead to development of type 2 diabetes, but there has been no investigation into its relationship with early progression of glycaemic deterioration and insulin resistance, especially in younger population. In this study we assessed longitudinal associations of pro- and anti-inflammatory markers with markers that evaluate glycaemia and insulin resistance. METHODS: This study includes 6537 initially nondiabetic children (mean age at baseline = 6.2 years) with repeated measurements from the IDEFICS/I.Family cohort study (mean follow-up = 5.3 years) from eight European countries. Markers of inflammation were used as independent variables and markers of glycaemia/insulin resistance as dependent variables. Associations were examined using two-level growth model. Models were adjusted for sex, age, major lifestyle, metabolic risk factors, early life markers, and other inflammatory markers in final model. RESULTS: Children with 6 years of follow-up showed that a one-unit increase in z-score of leptin level was associated with 0.38 (95% CI = 0.32 to 0.44) unit increase in HOMA-IR z-scores. Leptin continued to be associated with HOMA-IR even when analysis was limited to children with no overall obesity, no abdominal obesity, and low to normal triglyceride levels. An inverse association was observed between IL-15 and HOMA-IR (ß = -0.11, 95% CI = -0.15 to -0.07). CONCLUSIONS: IL-15 should be evaluated further in the prevention or treatment of prediabetes whereas leptin may prove to be useful in early detection of prediabetes via their association with markers of insulin resistance in European children.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Glucemia/análisis , Índice de Masa Corporal , Niño , Estudios de Cohortes , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Estado Prediabético/diagnóstico , Estado Prediabético/epidemiología
16.
Exp Physiol ; 107(3): 222-232, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35100657

RESUMEN

NEW FINDINGS: What is the central question of this study? How are the dynamics of interleukin (IL)-15 and its receptors altered during the differentiation of myoblasts into myotubes, and how is IL-15 regulated? What is the main finding and its importance? The mRNA levels of IL-15 and interleukin-2 receptor subunits beta and gamma increase during skeletal muscle differentiation, whereas interleukin-15 receptor subunit alpha (IL-15RA) exhibits different kinetics. IL-15RA regulates the localization and expression of IL-15 at the protein level. ABSTRACT: Interleukin-15 (IL-15) is a myokine in the interleukin-2 (IL-2) family that is generated in the skeletal muscle during exercise. The functional effect of IL-15 involves muscle regeneration and metabolic regulation in skeletal muscle. Reports have indicated that interleukin-15 receptor subunit alpha (IL-15RA) acts by regulating IL-15 localization in immune cells. However, the dynamics of IL-15 and its receptors, which regulate the IL-15 pathway in skeletal muscle differentiation, have not yet been clarified. In this study, we investigated the mechanism of IL-15 regulation using a mouse skeletal muscle cell line, C2C12 cells. We found that the mRNA expression of IL-15, interleukin-2 receptor subunit beta (IL-2RB; CD122) and interleukin-2 receptor subunit gamma (IL-2RG; CD132) increased, but that IL-15RA exhibited different kinetics as differentiation progressed. We also found that IL-15, mainly present in the cytosol, pre-assembled with IL-15RA in the cytosol and fused to the plasma membrane. Moreover, IL-15RA increased IL-15 protein levels. Our findings suggest that genes involved in the IL-15 signalling complex are enhanced with the differentiation of myotubes and that IL-15RA regulates the protein kinetics of IL-15 signalling in skeletal muscle.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-15 , Interleucina-15 , Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Mioblastos/metabolismo
17.
Pharm Res ; 39(2): 353-367, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35166995

RESUMEN

PURPOSE: The invention and application of new immunotherapeutic methods can compensate for the inefficiency of conventional cancer treatment approaches, partly due to the inhibitory microenvironment of the tumor. In this study, we tried to inhibit the growth of cancer cells and induce anti-tumor immune responses by silencing the expression of the ß-catenin in the tumor microenvironment and transmitting interleukin (IL)-15 cytokine to provide optimal conditions for the dendritic cell (DC) vaccine. METHODS: For this purpose, we used folic acid (FA)-conjugated SPION-carboxymethyl dextran (CMD) chitosan (C) nanoparticles (NPs) to deliver anti-ß-catenin siRNA and IL-15 to cancer cells. RESULTS: The results showed that the codelivery of ß-catenin siRNA and IL-15 significantly reduced the growth of cancer cells and increased the immune response. The treatment also considerably stimulated the performance of the DC vaccine in triggering anti-tumor immunity, which inhibited tumor development and increased survival in mice in two different cancer models. CONCLUSIONS: These findings suggest that the use of new nanocarriers such as SPION-C-CMD-FA could be an effective way to use as a novel combination therapy consisting of ß-catenin siRNA, IL-15, and DC vaccine to treat cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/trasplante , Portadores de Fármacos , Interleucina-15/administración & dosificación , Nanopartículas Magnéticas de Óxido de Hierro , Melanoma Experimental/terapia , ARN Interferente Pequeño/administración & dosificación , Tratamiento con ARN de Interferencia , Neoplasias Cutáneas/terapia , beta Catenina/genética , Animales , Antineoplásicos/química , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Dendríticas/inmunología , Composición de Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica , Interleucina-15/química , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos BALB C , ARN Interferente Pequeño/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral
18.
J Am Acad Dermatol ; 86(6): 1236-1245, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121075

RESUMEN

BACKGROUND: Systemic steroid therapies for Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) have been challenged because of their limited benefits. Whether additional tumor necrosis factor (TNF) α inhibition provides an optimized approach remains unexplored. OBJECTIVE: To investigate the efficacy of TNF-α inhibition combined with a steroid to treat SJS/TEN and to identify potential biomarkers. METHODS: Twenty-five patients with SJS/TEN were recruited and divided into 2 groups: 10 patients received methylprednisolone and 15 patients received etanercept plus methylprednisolone. Serum levels of granzyme B, perforin, interferon-γ, interleukin (IL) 6, IL-15, IL-18, macrophage inflammatory protein 1α, macrophage inflammatory protein 1ß, and TNF-α were measured by multiplex cytokine analysis kits during the acute and resolution phases. RESULTS: Compared with the steroid monotherapy, the combination therapy significantly shortened the course of the initial steroid treatment and the duration of the acute stage, hospitalization stay, and skin re-epithelialization. Although both therapies significantly reduced IL-15 levels; the combination therapy also decreased IL-6 and IL-18 levels. While the level of IL-15 was positively correlated with skin re-epithelialization time in both groups, the level of IL-6 served as an additional marker for the course of the disease in the combination therapy group. LIMITATIONS: The cohort size is relatively small. CONCLUSION: Additional TNF-α inhibition to steroid treatment appeared to improve outcomes for SJS/TEN.


Asunto(s)
Síndrome de Stevens-Johnson , Humanos , Interleucina-15 , Interleucina-18 , Interleucina-6 , Proteínas Inflamatorias de Macrófagos , Metilprednisolona/uso terapéutico , Esteroides , Síndrome de Stevens-Johnson/etiología , Factor de Necrosis Tumoral alfa
19.
Gynecol Endocrinol ; 38(9): 765-770, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921852

RESUMEN

OBJECTIVE: To determine if higher levels of circulating interleukin (IL)-15 are positively associated with improvement in insulin resistance in postmenopausal women (PW) with metabolic syndrome (MS). METHODS: According to the median value of IL-15 at baseline, PW older than or equal to 45 years were divided into two groups: higher (n = 43) and lower (n = 42) IL-15. There was a 9-month follow-up period with clinical assessments at baseline and at 9 months (criteria of metabolic syndrome, body fat, and insulin resistance). Insulin resistance (IR) was calculated according to the Homeostasis Model Assessment-estimated insulin resistance (HOMA-IR). For IL-1ß, IL-6, IL-10, IL-13, IL-33, IL-15, and TNF-α was determined using immunoassay Magnetic Bead Panel. RESULTS: There was an interaction between the time and group only for insulin (p = .008) and HOMA-IR (p = .024). After adjusting for confounding variables (clinical and ILs), the HOMA-IR (p = .006) and insulin (p = .003) were lower in the higher-IL-15 group [HOMA-IR: 2.2 (95% CI: 1.9-2.5) and insulin: 9.1 µIU/mL (95% CI: 7.9-10.3)] when compared to the lower-IL-15 group [HOMA-IR: 3.1 (95% CI: 2.6-3.6) and insulin: 12.9 (95% CI: 11.1-14.9)] after 9 months of follow-up. CONCLUSION: Higher levels of circulating IL-15 are positively associated with improvements in IR in PW with MS.


Higher levels of circulating interleukin (IL)-15 are positively associated with improvement in insulin resistance (IR) in postmenopausal women (PW) with metabolic syndrome (MS).This relationship is independent of levels of other cytokines (IL-1ß, IL-6, IL-10, IL-13, IL-33, and TNF-α).The levels of circulating IL-15 may be used as a prognostic biomarker for IR in PW with MS.The study opens the door for future studies on IL-15's role in treating IR among PW with MS.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Femenino , Humanos , Insulina , Interleucina-10 , Interleucina-13 , Interleucina-15 , Interleucina-33 , Interleucina-6 , Síndrome Metabólico/metabolismo , Posmenopausia , Factor de Necrosis Tumoral alfa
20.
Mol Cell Neurosci ; 115: 103658, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343628

RESUMEN

OBJECTIVE: Stroke is a major cause of death and disability in the United States. Current acute stroke therapy consists of clot-dissolving drugs, catheter-based interventions and physical rehabilitation. To date, there are no therapies that directly enhance neuronal survival after a stroke. Previous work from our lab demonstrated that Interleukin-15 (IL-15) peptide could rescue cardiomyocytes subjected to hypoxia. We sought to extend these findings to cortical neurons since IL-15 has been implicated to have an important role in neuronal homeostasis. METHODS: We have evaluated the effect of IL-15 peptide on primary cortical neurons derived from embryonic rats in vitro under conditions of anoxia and glucose deprivation, and in vivo following middle cerebral artery occlusion. RESULTS: IL-15 administration rescued neuronal cells subjected to anoxia coupled with glucose deprivation (AGD), as well as with reoxygenation. A hallmark of stroke is the ischemic microenvironment and associated oxidative stress, which results in DNA damage and ER stress, both of which contribute to neuronal cell damage and death. The expression of anoxia, ER stress, and DNA damage factors/markers was evaluated via western blot and correlated with the cellular survival effects of IL-15 in vitro. In addition, IL-15 effect of alleviating ER stress and increasing cell survival was also observed in vivo. INTERPRETATION: Our data indicate, for the first time, that administration of the pleiotropic factor IL-15 reduces neuronal cell death during AGD, which correlates with modulation of multiple cellular stress pathways.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Supervivencia Celular , Células Cultivadas , Glucosa , Infarto de la Arteria Cerebral Media , Interleucina-15 , Neuronas , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda