Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Biol Ther ; 16(3): 466-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25778879

RESUMEN

Glucocorticoid (GC) resistance remains a major obstacle to successful treatment of lymphoid malignancies. Till now, the precise mechanism of GC resistance remains unclear. In the present study, dexamethasone (Dex) inhibited cell proliferation, arrested cell cycle in G0/G1-phase, and induced apoptosis in Dex-sensitive acute lymphoblastic leukemia cells. However, Dex failed to cause cell death in Dex-resistant lymphoid malignant cells. Intriguingly, we found that autophagy was induced by Dex in resistant cells, as indicated by autophagosomes formation, LC3-I to LC3-II conversion, p62 degradation, and formation of acidic autophagic vacuoles. Moreover, the results showed that Dex reduced the activity of mTOR pathway, as determined by decreased phosphorylation levels of mTOR, Akt, P70S6K and 4E-BP1 in resistant cells. Inhibition of autophagy by either chloroquine (CQ) or 3-methyladenine (3-MA) overcame Dex-resistance in lymphoid malignant cells by increasing apoptotic cell death in vitro. Consistently, inhibition of autophagy by stably knockdown of Beclin1 sensitized Dex-resistant lymphoid malignant cells to induction of apoptosis in vivo. Thus, inhibition of autophagy has the potential to improve lymphoid malignancy treatment by overcoming GC resistance.


Asunto(s)
Autofagia/efectos de los fármacos , Dexametasona/administración & dosificación , Glucocorticoides/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
2.
Autophagy ; 11(1): 131-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25560310

RESUMEN

In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Fusarium/citología , Fusarium/crecimiento & desarrollo , Hifa/citología , Animales , Autofagia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Eliminación de Gen , Genes Fúngicos , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno/genética , Solanum lycopersicum/microbiología , Mariposas Nocturnas/microbiología , Fagosomas/metabolismo , Esporas Fúngicas/metabolismo , Virulencia/genética
3.
Autophagy ; 11(1): 100-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25484073

RESUMEN

Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-ß (Aß) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aß levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aß production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aß was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aß production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Autofagia , Proteína SUMO-1/metabolismo , Péptidos beta-Amiloides/ultraestructura , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Encéfalo/metabolismo , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Placa Amiloide/metabolismo , ARN Interferente Pequeño/metabolismo , Transfección , Regulación hacia Arriba
4.
Cancer Biol Ther ; 16(4): 567-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866016

RESUMEN

Renal cell carcinoma is an aggressive disease often asymptomatic and weakly chemo-radiosensitive. Currently, new biologic drugs are used among which everolimus, an mTOR inhibitor, that has been approved for second-line therapy. Since mTOR is involved in the control of autophagy, its antitumor capacity is often limited. In this view, chloroquine, a 4-alkylamino substituted quinoline family member, is an autophagy inhibitor that blocks the fusion of autophagosomes and lysosomes. In the present study, we evaluated the effects of everolimus alone or in combination with chloroquine on renal cancer cell viability and verified possible synergism. Our results demonstrate that renal cancer cells are differently sensitive to everolimus and chloroquine and the pharmacological combination everolimus/chloroquine was strongly synergistic inducing cell viability inhibition. In details, the pharmacological synergism occurs when chloroquine is administered before everolimus. In addition, we found a flow autophagic block and shift of death mechanisms to apoptosis. This event was associated with decrease of Beclin-1/Bcl(-)2 complex and parallel reduction of anti-apoptotic protein Bcl(-)2 in combined treatment. At last, we found that the enhancement of apoptosis induced by drug combination occurs through the intrinsic mitochondrial apoptotic pathway activation, while the extrinsic pathway is involved only partly following its activation by chloroquine. These results provide the basis for new therapeutic strategies for the treatment of renal cell carcinoma after appropriate clinical trial.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Cloroquina/farmacología , Everolimus/farmacología , Neoplasias Renales/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Neoplasias Renales/genética , Lisosomas/efectos de los fármacos , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
5.
Autophagy ; 11(3): 560-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714620

RESUMEN

The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.


Asunto(s)
Autofagia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Animales , Supervivencia Celular , Cloroquina/química , Dactinomicina/química , Endosomas/química , Regulación Leucémica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mesilato de Imatinib/química , Células K562 , Leucemia/metabolismo , Lisosomas/química , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Microscopía Fluorescente , Trasplante de Neoplasias , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN
6.
Autophagy ; 11(2): 344-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831014

RESUMEN

Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Toxinas Shiga/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/citología , Escherichia coli , Humanos , Ratones Endogámicos C57BL , Factor de Transcripción CHOP
7.
Cell Cycle ; 14(6): 867-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25590373

RESUMEN

Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adaptación Fisiológica , Autofagia , Calcio/metabolismo , Notocorda/citología , Presión Osmótica , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Proteína 5 Relacionada con la Autofagia , Western Blotting , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Proteínas de Choque Térmico/metabolismo , Espacio Intracelular/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Proteína Sequestosoma-1 , Transducción de Señal , Coloración y Etiquetado , Estrés Fisiológico
8.
Autophagy ; 11(2): 314-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803782

RESUMEN

An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Witanólidos/farmacología , Autofagia/fisiología , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Autophagy ; 10(11): 2006-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484080

RESUMEN

Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.


Asunto(s)
Antineoplásicos/química , Nanopartículas del Metal/química , Neoplasias/patología , Plata/química , Androstadienos/química , Animales , Apoptosis , Autofagia , Línea Celular Tumoral , Supervivencia Celular , Fibroblastos/metabolismo , Células HeLa , Humanos , Iones , Lisosomas/metabolismo , Masculino , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , ARN Interferente Pequeño/metabolismo , Wortmanina
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda