Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Cytotherapy ; 26(8): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506769

RESUMEN

BACKGROUND AIMS: Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain. METHODS: Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium. RESULTS: We found that HPL supported greater expansion of CAR-Vδ2 T cells with comparable in vitro cytotoxicity and cytokine secretion to FBS-expanded CAR-Vδ2 T cells. HPL-expanded CAR-Vδ2 T cells showed enhanced in vivo anti-tumor activity with longer T-cell persistence compared with FBS counterparts, with 4-1BB costimulated CAR showing the greatest activity. Mechanistically, HPL-expanded CAR Vδ2 T cells exhibited reduced apoptosis and senescence transcriptional pathways compared to FBS-expanded CAR-Vδ2 T cells and increased telomerase activity. CONCLUSIONS: This study supports enhancement of therapeutic potency of CAR-Vδ2 T cells through a manufacturing improvement.


Asunto(s)
Apoptosis , Plaquetas , Senescencia Celular , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Plaquetas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Antígenos CD28/metabolismo , Antígenos CD28/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
2.
Cytotherapy ; 26(9): 988-998, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38819364

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) exert immunomodulatory effects, primarily through released extracellular vesicles (EVs). For the clinical-grade manufacturing of MSC-EV products culture conditions need to support MSC expansion and allow the manufacturing of potent MSC-EV products. Traditionally, MSCs are expanded in fetal bovine serum-supplemented media. However, according to good manufacturing practice (GMP) guidelines the use of animal sera should be avoided. To this end, human platelet lysate (hPL) has been qualified as an animal serum replacement. Although hPL outcompetes animal sera in promoting MSC expansion, hPL typically contains components of the coagulation system that need to be inhibited or removed to avoid coagulation reactions in the cell culture. Commonly, heparin is utilized as an anticoagulant; however, higher concentrations of heparin can negatively impact MSC viability, and conventional concentrations alone do not sufficiently prevent clot formation in prepared media. METHODS: To circumvent unwanted coagulation processes, this study compared various clotting prevention strategies, including different anticoagulants and calcium chloride (CaCl2)-mediated declotting methods, which in combination with heparin addition was found effective. We evaluated the influence of the differently treated hPLs on the proliferation and phenotype of primary bone marrow-derived MSCs and identified the CaCl2-mediated declotting method as the most effective option. To determine whether CaCl2 declotted hPL allows the manufacturing of immunomodulatory MSC-EV products, EVs were prepared from conditioned media of MSCs expanded with either conventional or CaCl2 declotted hPL. In addition to metric analyses, the immunomodulatory potential of resulting MSC-EV products was assessed in a recently established multi-donor mixed lymphocyte reaction assay. RESULTS AND CONCLUSIONS: Our findings conclusively show that CaCl2-declotted hPLs support the production of immunomodulatory-active MSC-EV products.


Asunto(s)
Plaquetas , Cloruro de Calcio , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Proliferación Celular/efectos de los fármacos , Cloruro de Calcio/farmacología , Inmunomodulación/efectos de los fármacos , Heparina/farmacología , Células Cultivadas , Animales , Diferenciación Celular/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Anticoagulantes/farmacología
3.
Vox Sang ; 119(1): 79-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049931

RESUMEN

Human platelet lysate (hPL) is a supplement for cell culture media that can be derived from platelet concentrates. As not-for-profit blood establishments, we endorse the evolution of maximally exploiting the potential of donated blood and its derived components, including platelets. The decision to use platelet concentrates to supply hPL as a cell culture supplement should align with the principles and values that blood establishments hold towards the use of donated blood components in transfusion. As a consequence, questions on ethics, practical standardization of hPL production and logistics as well as on assuring hPL quality and safety need careful consideration. We therefore propose an opinion on some of these matters based on available literature and on discussions within the proceedings of the Working Group on Innovation and New Products of the European Blood Alliance. In addition, we propose collaboration among European blood establishments to streamline efforts of hPL supply to maximize the potential of hPL and its application in the wider field of medicine.


Asunto(s)
Plaquetas , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Proliferación Celular , Técnicas de Cultivo de Célula , Europa (Continente) , Diferenciación Celular , Células Cultivadas
4.
Artículo en Inglés | MEDLINE | ID: mdl-38842036

RESUMEN

PURPOSE: Chondrocyte-based cell therapies are effective for the treatment of chondral lesions, but remain poorly indicated for diffuse lesions in the context of early osteoarthritis (OA). The aim of this study was to develop a protocol to obtain chondroprogenitor cells suitable for the treatment of diffuse chondral lesions within early OA. METHODS: Cartilage cells were expanded at low density in human platelet lysate (hPL). A test was performed to exclude senescence. The expression of surface cluster of differentiation 146, cluster of differentiation 166, major histocompatibility complex (MHC)-I and MHC-II and of genes of interest were evaluated, as well as the trophic potential of these cells, by the assessment of lubricin and matrix production. The immunomodulatory potential was assessed through their co-culture with macrophages. RESULTS: Cartilage cells expanded at low density in hPL showed higher proliferation rate than standard-density cells, no replicative senescence, low immunogenicity and expression of lubricin. Moreover, they presented an increased expression of chondrogenic and antihypertrophic markers, as well as a superior matrix deposition if compared to cells cultured at standard density. Cartilage cells induced on macrophages an upregulation of CD206, although a higher increase of CD163 expression was observed in the presence of low-density cells. CONCLUSIONS: These findings lay the grounds to explore the clinical usefulness of low-density cultured cartilage cells to treat diffuse lesions in early OA joints for both autologous and allogenic use. LEVEL OF EVIDENCE: Not applicable.

5.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256259

RESUMEN

Platelet transfusion has various challenges, and platelet-derived extracellular vesicles have been reported to have more significant procoagulant activity than platelets themselves. Furthermore, platelet products derived from platelet-rich plasma and platelet lysates (PLs) have gained attention for their physiological activity and potential role as drug delivery vehicles owing to the properties of their membranes. We aimed to investigate the characteristics of the fractions isolated through ultracentrifugation from mouse-washed PLs and assess the potential clinical applications of these fractions as a therapeutic approach for bleeding conditions. We prepared PLs from C57BL/6 mouse-washed platelets and isolated three different fractions (20K-vesicles, 100K-vesicles, and PLwo-vesicles) using ultracentrifugation. There was a notable difference in particle size distribution between 20K-vesicles and 100K-vesicles, particularly in terms of the most frequent diameter. The 20K-vesicles exhibited procoagulant activity with concentration dependence, whereas PLwo-vesicles exhibited anticoagulant activity. PLwo-vesicles did not exhibit thrombin generation capacity, and the addition of PLwo-vesicles to Microparticle Free Plasma extended the time to initiate thrombin generation by 20K-vesicles and decreased the peak thrombin value. In a tail-snip bleeding assay, pre-administration of 20K-vesicles significantly shortened bleeding time. PL-derived 20K-vesicles exhibited highly potent procoagulant activity, making them potential alternatives to platelet transfusion.


Asunto(s)
Hemostáticos , Plasma Rico en Plaquetas , Animales , Ratones , Ratones Endogámicos C57BL , Trombina , Bioensayo , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338805

RESUMEN

Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor ß, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.


Asunto(s)
Plasma Rico en Plaquetas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Medicina Regenerativa/métodos , Factor de Crecimiento Derivado de Plaquetas , Plasma Rico en Plaquetas/fisiología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Plaquetas/fisiología
7.
Growth Factors ; 41(3): 165-177, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37351894

RESUMEN

Autologous platelet-rich plasma (PRP) and platelet lysate (PL) are nowadays promising candidates in the treatment of articular cartilage lesions. We aimed to compare PRP and PL injection effectiveness in patients with knee osteoarthritis (KOA). A total of fifty women with KOA were included in the study. Patients were treated with intra-articular injections of PRP and PL. Clinical outcomes were evaluated using the comparison of VAS, WOMAC, and ROM scores. The concentration levels of growth factors and cytokines were measured by ELISA. All patients showed significant improvements in pain and function following treatment of KOA with PL and PRP compared to baseline. Moreover, PL's concentration of growth factors was significantly higher than PRP. A significant increase was also observed in all of the aforementioned mediators in both PRP and PL products compared to control. These results can introduce PL as a promising and alternative option for KOA therapy in the future.


Asunto(s)
Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Humanos , Femenino , Osteoartritis de la Rodilla/tratamiento farmacológico , Ácido Hialurónico , Resultado del Tratamiento , Inyecciones Intraarticulares
8.
Cell Tissue Res ; 391(1): 173-188, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271300

RESUMEN

Safety concerns associated with foetal bovine serum (FBS) have restricted its translation into clinics. We hypothesised that platelet lysate (PL) can be utilised as a safe alternative to produce serum-free 3D-engineered skin. PL supported a short-term expansion of fibroblasts, with negligible replication-induced senescence and directed epidermal stratification. PL-expanded fibroblasts were phenotypically separated into three subpopulations of CD90+FAP+, CD90+FAP- and CD90-FAP+, based on CD90 (reticular marker) and FAP (papillary marker) expression profile. PL drove the expansion of the intermediate CD90+ FAP+ subpopulation in expense of reticular CD90+FAP-, which may be less fibrotic once grafted. The 3D-engineered skin cultured in PL was analysed by immunofluorescence using specific markers. Detection of ColIV and LMN-511 confirmed basement membrane. K10 confirmed near native differentiation pattern of neo-epidermis. CD29- and K5-positive interfollicular stem cells were also sustained. Transmission and scanning electron microscopies detailed the ultrastructure of the neo-dermis and neo-epidermis. To elucidate the underlying mechanism of the effect of PL on skin maturation, growth factor contents in PL were measured, and TGF-ß1 was identified as one of the most abundant. TGF-ß1 neutralising antibody reduced the number of Ki67-positive proliferative cells, suggesting TGF-ß1 plays a role in skin maturation. Moreover, the 3D-engineered skin was exposed to lucifer yellow on days 1, 3 and 5. Penetration of lucifer yellow into the skin was used as a semi-quantitative measure of improved barrier function over time. Our findings support the concept of PL as a safe and effective serum alternative for bioengineering skin for cell therapies.


Asunto(s)
Extractos Celulares , Piel , Ingeniería de Tejidos , Plaquetas/química , Diferenciación Celular , Epidermis , Fibroblastos , Piel/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Extractos Celulares/química , Ingeniería de Tejidos/métodos
9.
Cytotherapy ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38043052

RESUMEN

BACKGROUND AIMS: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS: Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS: Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS: Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.

10.
Cytotherapy ; 25(10): 1057-1068, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516948

RESUMEN

BACKGROUND AIMS: Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) are increasingly used in research and therapy. To obtain hUC-MSCs, a diversity of isolation and expansion methods are applied. Here, we report on a robust and standardized method for hUC-MSC isolation and expansion. METHODS: Using 90 hUC donors, we compared and optimized critical variables during each phase of the multi-step procedure involving UC collection, processing, MSC isolation, expansion and characterization. Furthermore, we assessed the effect of donor-to-donor variability regarding UC morphology and donor attributes on hUC-MSC characteristics. RESULTS: We demonstrated robustness of our method across 90 UC donors at each step of the procedure. With our method, UCs can be collected up to 6 h after birth, and UC-processing can be initiated up to 48 h after collection without impacting on hUC-MSC characteristics. The removal of blood vessels before explant cultures improved hUC-MSC purity. Expansion in Minimum essential medium α supplemented with human platelet lysate increased reproducibility of the expansion rate and MSC characteristics as compared with Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum. The isolated hUC-MSCs showed a purity of ∼98.9%, a viability of >97% and a high proliferative capacity. Trilineage differentiation capacity of hUC-MSCs was reduced as compared with bone marrow-derived MSCs. Functional assays indicated that the hUC-MSCs were able to inhibit T-cell proliferation demonstrating their immune-modulatory capacity. CONCLUSIONS: We present a robust and standardized method to isolate and expand hUC-MSCs, minimizing technical variability and thereby lay a foundation to advance reliability and comparability of results obtained from different donors and different studies.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Reproducibilidad de los Resultados , Cordón Umbilical , Diferenciación Celular , Proliferación Celular
11.
Cytotherapy ; 25(5): 548-558, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36894437

RESUMEN

The development of medicinal products often continues throughout the different phases of a clinical study and may require challenging changes in raw and starting materials at later stages. Comparability between the product properties pre- and post-change thus needs to be ensured. Here, we describe and validate the regulatory compliant change of a raw material using the example of a nasal chondrocyte tissue-engineered cartilage (N-TEC) product, initially developed for treatment of confined knee cartilage lesions. Scaling up the size of N-TEC as required for the treatment of larger osteoarthritis defects required the substitution of autologous serum with a clinical-grade human platelet lysate (hPL) to achieve greater cell numbers necessary for the manufacturing of larger size grafts. A risk-based approach was performed to fulfill regulatory requirements and demonstrate comparability of the products manufactured with the standard process (autologous serum) already applied in clinical indications and the modified process (hPL). Critical attributes with regard to quality, purity, efficacy, safety and stability of the product as well as associated test methods and acceptance criteria were defined. Results showed that hPL added during the expansion phase of nasal chondrocytes enhances proliferation rate, population doublings and cell numbers at passage 2 without promoting the overgrowth of potentially contaminant perichondrial cells. N-TEC generated with the modified versus standard process contained similar content of DNA and cartilaginous matrix proteins with even greater expression levels of chondrogenic genes. The increased risk for tumorigenicity potentially associated with the use of hPL was assessed through karyotyping of chondrocytes at passage 4, revealing no chromosomal changes. Moreover, the shelf-life of N-TEC established for the standard process could be confirmed with the modified process. In conclusion, we demonstrated the introduction of hPL in the manufacturing process of a tissue engineered product, already used in a late-stage clinical trial. Based on this study, the national competent authorities in Switzerland and Germany accepted the modified process which is now applied for ongoing clinical tests of N-TEC. The described activities can thus be taken as a paradigm for successful and regulatory compliant demonstration of comparability in advanced therapy medicinal products manufacturing.


Asunto(s)
Condrocitos , Ingeniería de Tejidos , Humanos , Cariotipificación , Articulación de la Rodilla
12.
Cytotherapy ; 25(3): 286-297, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599772

RESUMEN

BACKGROUND AIMS: Cell therapies have the potential to improve reconstructive procedures for congenital craniofacial cartilage anomalies such as microtia. Adipose-derived stem cells (ADSCs) and auricular cartilage stem/progenitor cells (CSPCs) are promising candidates for cartilage reconstruction, but their successful use in the clinic will require the development of xeno-free expansion and differentiation protocols that can maximize their capacity for chondrogenesis. METHODS: We assessed the behavior of human ADSCs and CSPCs grown either in qualified fetal bovine serum (FBS) or human platelet lysate (hPL), a xeno-free alternative, in conventional monolayer and 3-dimensional spheroid cultures. RESULTS: We show that CSPCs and ADSCs display greater proliferation rate in hPL than FBS and express typical mesenchymal stromal cell surface antigens in both media. When expanded in hPL, both cell types, particularly CSPCs, maintain a spindle-like morphology and lower surface area over more passages than in FBS. Both media supplements support chondrogenic differentiation of CSPCs and ADSCs grown either as monolayers or spheroids. However, chondrogenesis appears less ordered in hPL than FBS, with reduced co-localization of aggrecan and collagen type II in spheroids. CONCLUSIONS: hPL may be beneficial for the expansion of cells with chondrogenic potential and maintaining stemness, but not for their chondrogenic differentiation for tissue engineering or disease modeling.


Asunto(s)
Adipocitos , Condrogénesis , Humanos , Niño , Diferenciación Celular , Células Cultivadas , Proliferación Celular , Plaquetas
13.
J Biomed Sci ; 30(1): 79, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37704991

RESUMEN

Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Hematopoyéticas , Humanos , Medicina Regenerativa , Plaquetas , Tratamiento Basado en Trasplante de Células y Tejidos
14.
Transfusion ; 63(2): 373-383, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36426732

RESUMEN

BACKGROUND: We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use. STUDY DESIGN AND METHODS: The method aimed at using glass beads and calcium. An optimal concentration of calcium and glass beads was determined by serial dilution. This was translated to a novel method and compared to known methods: freeze-thawing and high calcium. Quality outcome measures were transmittance, fibrinogen and growth factor content, and cell doubling time. RESULTS: An optimal concentration of 5 mM Ca2+ and 0.2 g/ml glass beads resulted in hPL with yields of 92% ± 1% (n = 50) independent of source material (apheresis or buffy coat-derived). The transmittance was highest (56% ± 9%) compared to known methods (<39%). The fibrinogen concentration (7.0 ± 1.1 µg/ml) was well below the threshold, avoiding the need for heparin. Growth factor content was similar across hPL production methods. The cell doubling time of adipose derived stem cells was 25 ± 1 h and not different across methods. Batch consistency was determined across six batches of hPL (each n = 25 constituting concentrates) and was <11% for all parameters including cell doubling time. Calcium precipitation formed after 4 days of culturing stem cells in media with hPL prepared by the high (15 mM) Ca2+ method, but not with hPL prepared by glass bead method. DISCUSSION: The novel method transforms platelet concentrates to hPL with little hands-on time. The method results in high yield, is closed system, without heparin and non-inferior to published methods.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Plaquetas/metabolismo , Calcio , Proliferación Celular , Medios de Cultivo/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Fibrinógeno/metabolismo , Heparina/metabolismo , Células Cultivadas , Diferenciación Celular
15.
Reprod Biomed Online ; 46(3): 446-459, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690568

RESUMEN

RESEARCH QUESTION: What are the effects of platelet lysate on structure, function and epigenetic modifications of heterotopically transplanted mouse ovarian tissues? DESIGN: Mice were divided into three groups (n = 17 per group): control (mice with no ovariectomy, grafting or treatment), autograft and autograft plus platelet lysate (3 ml/kg at the graft sites). Inflammatory markers, serum malondialdehyde (MDA) concentration and total antioxidant capacity were assessed on day 7 after transplantation. Twenty-eight days after transplantation, stereological and hormonal analyses were conducted. Chromatin immunoprecipitation and quantitative real-time polymerase chain reaction were also used to quantify the epigenetic modifications of maturation genes, parallel to their expression. RESULTS: The total volume of the ovary, cortex and medulla, and the number of different types of follicles, the concentration of interleukin (IL)-10, progesterone and oestradiol and total antioxidant capacity significantly decreased in the autograft group compared with the control group (P < 0.001); these parameters significantly increased in the autograft plus platelet lysate group compared with the autograft group (P < 0.001). The concentrations of tumour necrosis factor alpha, IL-6 and MDA increased significantly in the autograft group compared with the control group (P < 0.001); in the autograft plus platelet lysate group, these parameters significantly decreased compared with the autograft group (P < 0.001). In the autograft plus platelet lysate group, the expression levels of Gdf-9 (P < 0.0021), Igf-1 (P < 0.0048) and Igf-2 (P < 0.0063) genes also increased along with a lower incorporation of MeCP2 in the promoter regions (P < 0.001) compared with the autograft group. CONCLUSIONS: Platelet lysate can contribute to follicular survival by improving folliculogenesis and increasing the expression of oocyte maturation genes.


Asunto(s)
Antioxidantes , Ovario , Femenino , Ratones , Animales , Ovario/metabolismo , Trasplante Autólogo , Antioxidantes/farmacología , Apoptosis , Estradiol
16.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982842

RESUMEN

Cord blood-platelet lysate (CB-PL), containing growth factors such as a platelet-derived growth factor, has a similar efficacy to peripheral blood-platelet lysate (PB-PL) in initiating cell growth and differentiation, which makes it a unique alternative to be implemented into oral ulceration healing. This research study aimed to compare the effectiveness of CB-PL and PB-PL in promoting oral wound closure in vitro. Alamar blue assay was used to determine the optimal concentration of CB-PL and PB-PL in enhancing the proliferation of human oral mucosal fibroblasts (HOMF). The percentage of wound closure was measured using the wound-healing assay for CB-PL and PB-PL at the optimal concentration of 1.25% and 0.3125%, respectively. The gene expressions of cell phenotypic makers (Col. I, Col. III, elastin and fibronectin) were determined via qRT-PCR. The concentrations of PDGF-BB were quantified using ELISA. We found that CB-PL was as effective as PB-PL in promoting wound-healing and both PL were more effective compared to the control (CTRL) group in accelerating the cell migration in the wound-healing assay. The gene expressions of Col. III and fibronectin were significantly higher in PB-PL compared to CB-PL. The PDGF-BB concentration of PB-PL was the highest and it decreased after the wound closed on day 3. Therefore, we concluded that PL from both sources can be a beneficial treatment for wound-healing, but PB-PL showed the most promising wound-healing properties in this study.


Asunto(s)
Sangre Fetal , Fibronectinas , Humanos , Becaplermina/metabolismo , Fibronectinas/metabolismo , Proliferación Celular , Plaquetas/metabolismo , Fibroblastos
17.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769200

RESUMEN

We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.


Asunto(s)
Técnicas de Cultivo de Célula , Células Endoteliales , Humanos , Proliferación Celular , Plaquetas/metabolismo , Células Cultivadas , Córnea , Medios de Cultivo/farmacología , Diferenciación Celular , Proteínas de Unión a Ácidos Grasos/metabolismo
18.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835154

RESUMEN

Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Células Madre Mesenquimatosas , Gelatina de Wharton , Humanos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo , Gelatina de Wharton/citología , Gelatina de Wharton/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos
19.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768532

RESUMEN

Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Hidrogeles/química , Medicina Regenerativa , Tejido Adiposo/metabolismo , Fibrina/metabolismo , Ratones Desnudos , Distribución Tisular , Diferenciación Celular
20.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834932

RESUMEN

Chronic wounds depict a silent epidemic challenging medical professionals worldwide. Regenerative medicine uses adipose-derived stem cells (ADSC) in promising new therapies. In this study, platelet lysate (PL) as a xenogen-free substitute for foetal bovine serum (FBS) in ADSC culture was used to create an ADSC secretome containing cytokines for optimal wound healing conditions. The ADSC secretome was tested on keratinocytes for migrational behaviour and viability. Therefore, human ADSC were characterized under FBS (10%) and PL (5% and 10%) substitution, regarding morphology, differentiation, viability, gene and protein expression. ADSC were then cultured in 5% PL and their secretome was used for stimulation of keratinocyte migration and viability. To enhance the effect, ADSC were treated with Epithelial Growth Factor (EGF, 100 ng/mL) and hypoxia (1% O2). In both PL and FBS groups, ADSC expressed typical stem cell markers. PL induced a significantly higher increase in cell viability compared to FBS substitution. ADSC secretome contained various beneficial proteins which enhance the wound healing capacity of keratinocytes. This could be optimized treating ADSC with hypoxia and EGF. In conclusion, the study shows that ADSC cultivated in 5% PL can effectively support wound healing conditions and can be considered as a promising new therapy for individual treatment of chronic wound disorders.


Asunto(s)
Tejido Adiposo , Técnicas de Cultivo de Célula , Queratinocitos , Secretoma , Células Madre , Humanos , Tejido Adiposo/metabolismo , Proliferación Celular , Factor de Crecimiento Epidérmico/metabolismo , Hipoxia/metabolismo , Queratinocitos/metabolismo , Secretoma/metabolismo , Células Madre/metabolismo , Plaquetas/metabolismo , Extractos Celulares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda