RESUMEN
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis, and in acetyl coenzyme A (acetyl-CoA) formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase, and pyruvate-ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Furthermore, we show that H. volcanii-during aerobic growth on glucose-excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway and of anaplerosis and report the first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea.IMPORTANCE In this work, we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism Haloferax volcanii The study includes transcriptional analyses, growth experiments with deletion mutants. and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl coenzyme A (acetyl-CoA) and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Furthermore, we analyzed the key players involved in the acetate switch, i.e., in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects of glucose degradation, anaplerosis, and acetate switch in H. volcanii and thus expand our understanding of the unusual sugar metabolism in archaea.
Asunto(s)
Acetatos/metabolismo , Glucosa/metabolismo , Haloferax volcanii/enzimología , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/crecimiento & desarrollo , Haloferax volcanii/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Ácido Pirúvico/metabolismoRESUMEN
Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.
Asunto(s)
Anaerobiosis/fisiología , Bacteroides thetaiotaomicron/metabolismo , Oxígeno/metabolismo , Acetiltransferasas/metabolismo , Anaerobiosis/genética , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Oxígeno/fisiología , Piruvato-Sintasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismoRESUMEN
Pyruvate:ferredoxin oxidoreductase (PFOR) is a microbial enzyme that uses thiamine pyrophosphate (TPP), three [4Fe-4S] clusters, and coenzyme A (CoA) in the reversible oxidation of pyruvate to generate acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism, including the Wood-Ljungdahl pathway. PFOR is a member of the 2-oxoacid:ferredoxin oxidoreductase (OFOR) superfamily, which plays major roles in both microbial redox reactions and carbon dioxide fixation. Here, we present a set of crystallographic snapshots of the best-studied member of this superfamily, the PFOR from Moorella thermoacetica (MtPFOR). These snapshots include the native structure, those of lactyl-TPP and acetyl-TPP reaction intermediates, and the first of an OFOR with CoA bound. These structural data reveal the binding site of CoA as domain III, the function of which in OFORs was previously unknown, and establish sequence motifs for CoA binding in the OFOR superfamily. MtPFOR structures further show that domain III undergoes a conformational change upon CoA binding that seals off the active site and positions the thiolate of CoA directly adjacent to the TPP cofactor. These structural findings provide a molecular basis for the experimental observation that CoA binding accelerates catalysis by 105-fold.
Asunto(s)
Proteínas Bacterianas/química , Coenzima A/metabolismo , Moorella/enzimología , Piruvato-Sintasa/química , Piruvato-Sintasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Coenzima A/química , Cristalografía por Rayos X , Ferredoxinas/química , Ferredoxinas/metabolismo , Cinética , Moorella/química , Moorella/genética , Piruvato-Sintasa/genética , Ácido Pirúvico/química , Ácido Pirúvico/metabolismoRESUMEN
The thermophilic anaerobes Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are good candidates for lignocellulosic ethanol production. T. saccharolyticum has been successfully engineered to produce ethanol at high titer (70â¯g/L). The maximum ethanol titer of engineered strains of C. thermocellum is only 25â¯g/L. We hypothesize that one or more of the enzymes in the ethanol production pathway in C. thermocellum is not adequate for ethanol production at high titer. In this study, we focused on the enzymes responsible for the part of the ethanol production pathway from pyruvate to ethanol. In T. saccharolyticum, we replaced all of the genes encoding proteins in this pathway with their homologs from C. thermocellum and examined what combination of gene replacements restricted ethanol titer. We found that a pathway consisting of Ct_nfnAB, Ct_fd, Ct_adhE and Ts_pforA was sufficient to support ethanol titer greater than 50â¯g/L, however replacement of Ts_pforA by Ct_pfor1 dramatically decreased the maximum ethanol titer to 14â¯g/L. We then demonstrated that the reason for reduced ethanol production is that the Ct_pfor1 is inhibited by accumulation of ethanol and NADH, while Ts_pforA is not.
Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Clostridium thermocellum/metabolismo , Ferredoxinas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Piruvato-Sintasa/metabolismo , Thermoanaerobacterium/metabolismo , Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa/genética , Clostridium thermocellum/genética , Fermentación , Ferredoxinas/genética , Ingeniería Metabólica , NADH NADPH Oxidorreductasas/genética , Plásmidos/genéticaRESUMEN
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.
Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Piruvato-Sintasa/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/patogenicidad , Animales , Anticuerpos/metabolismo , Proliferación Celular/efectos de los fármacos , Células Epiteliales/parasitología , Interacciones Huésped-Patógeno/efectos de los fármacos , Hierro/farmacología , Ratones , Conejos , Oligoelementos/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismoRESUMEN
Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.
Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Antiparasitarios/farmacología , Tiazoles/farmacología , Queratitis por Acanthamoeba/parasitología , Acanthamoeba castellanii/clasificación , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/fisiología , Anaerobiosis , Encéfalo/irrigación sanguínea , Células Cultivadas , Relación Dosis-Respuesta a Droga , Genotipo , Humanos , Microvasos/citología , Nitrocompuestos , Péptido Hidrolasas/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Piruvato-Sintasa/metabolismoRESUMEN
The present frontrunners in the chemotherapy of infections caused by protozoa are nitro-based prodrugs that are selectively activated by PFOR-mediated redox reactions. This study seeks to analyze the distribution of PFOR in selected protozoa and bacteria by applying comparative genomics to test the hypothesis that PFOR in eukaryotes was acquired through horizontal gene transfer (HGT) from bacteria. Furthermore, to identify other putatively acquired genes, proteome-wide and gene enrichment analyses were used. A plausible explanation for the patchy occurrence of PFOR in protozoa is based on the hypothesis that bacteria are potential sources of genes that enhance the adaptation of protozoa in hostile environments. Comparative genomics of Entamoeba histolytica and the putative gene donor, Desulfovibrio vulgaris, identified eleven candidate genes for HGT involved in intermediary metabolism. If these results can be reproduced in other PFOR-possessing protozoa, it would provide more validated evidence to support the horizontal transfer of pfor from bacteria.
RESUMEN
In the present study, we evaluated the genetic variability of the internal transcribed spacer (ITS) region and the pyruvate:ferredoxin oxidoreductase (pfor) A gene of Trichomonas vaginalis from female patients and its possible implications in the host-parasite relationship. Phylogenetic and genetics of populations analyses were performed by analyzing sequences of the ITS region and partial pfor A gene of clinical samples with T. vaginalis, as previously documented. Alignments of protein sequences and prediction of three-dimensional structure were also performed. Although no correlation between the main clinical characteristics of the samples and the results of phylogeny was found, a median-joining analysis of ITS haplotypes showed two main clusters. Also, pfor A, due to its phylogenetic divergence, could be used as a marker to confirm the genus and species of trichomonads. Alignment of protein sequences and prediction of three-dimensional structure showed that PFOR A had a highly conserved structure with two synonymous mutations in the PFOR domain, substituting a V for a G or a S for a P. Our results suggest that the role of genetic variability of PFOR and ITS may not be significant in the symptomatology of this pathogen; however, their utility as genus and species markers in trichomonads is promising.
RESUMEN
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
Asunto(s)
Antiprotozoarios , Giardia lamblia , Metronidazol/farmacología , Antiprotozoarios/farmacología , Ferredoxinas/genética , Ferredoxinas/metabolismo , Piruvato-Sintasa/genética , Piruvato-Sintasa/metabolismo , Giardia , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Variación GenéticaRESUMEN
Aquifex aeolicus is a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO2 via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that A. aeolicus possesses a pentameric version of these enzyme complexes ((αßγδε)2) and that they are highly abundant in the cell. In addition, we have purified and characterized, from the soluble fraction of A. aeolicus, two low redox potential and oxygen-stable [4Fe-4S] ferredoxins (Fd6 and Fd7, E0 = -440 and -460 mV, respectively) and shown that they can physically interact and exchange electrons with both PFOR and OGOR, suggesting that they could be the physiological electron donors of the system in vivo. Shotgun proteomics indicated that all the enzymes assumed to be involved in the rTCA cycle are produced in the A. aeolicus cells. A number of additional enzymes, previously suggested to be part of a putative partial Wood-Ljungdahl pathway used for the synthesis of serine and glycine from CO2 were identified by mass spectrometry, but their abundance in the cell seems to be much lower than that of the rTCA cycle. Their possible involvement in carbon assimilation is discussed.
RESUMEN
Pyruvate decarboxylase (PDC) is a key enzyme involved in ethanol fermentation, and it catalyzes the decarboxylation of pyruvate to acetaldehyde and CO2. Bifunctional PORs/PDCs that also have additional pyruvate:ferredoxin oxidoreductase (POR) activity are found in hyperthermophiles, and they are mostly oxygen-sensitive and CoA-dependent. Thermostable and oxygen-stable PDC activity is highly desirable for biotechnological applications. The enzymes from the thermoacidophiles Saccharolobus (formerly Sulfolobus) solfataricus (Ss, Topt = 80 °C) and Sulfolobus acidocaldarius (Sa, Topt = 80 °C) were purified and characterized, and their biophysical and biochemical properties were determined comparatively. Both enzymes were shown to be heterodimeric, and their two subunits were determined by SDS-PAGE to be 37 ± 3 kDa and 65 ± 2 kDa, respectively. The purified enzymes from S. solfataricus and S. acidocaldarius showed both PDC and POR activities which were CoA-dependent, and they were thermostable with half-life times of 2.9 ± 1 and 1.1 ± 1 h at 80 °C, respectively. There was no loss of activity in the presence of oxygen. Optimal pH values for their PDC and POR activity were determined to be 7.9 and 8.6, respectively. In conclusion, both thermostable SsPOR/PDC and SaPOR/PDC catalyze the CoA-dependent production of acetaldehyde from pyruvate in the presence of oxygen.
RESUMEN
Objective To investigate the inhibitory effects of pyruvate-ferredoxin oxidoreductase(PFOR)by luteolin and its anti-Clostridium difficile effect.Methods The PFOR encoding sequence of Clostridium difficile was cloned into the expression vector pET-2a and transformed into competent Escherichia coli.The crude enzyme was prepared after induction with IPTG(Isopropyl β-D-Thiogalactoside).The inhibitory rate of the test compounds on PFOR was determined after an 8-hour anaerobic reaction between PFOR and 40 μmol·L-1 of test compounds at 25℃.The minimum inhibitory concentration(MIC)of PFOR inhibitors against C.difficile strains(ATCC BAA 1382 and ATCC BAA 1870)was determined by monitoring the OD600 of the bacterial culture.Molecular docking was performed to investigate the possible interaction mechanisms between PFOR and inhibitors.Results Among the tested compounds,the luteolin showed the strongest inhibitory activity against PFOR,with a single-point inhibition rate of approximately 33%,which is comparable to that observed with the positive inhibitor nitazoxanide(40%).Molecular docking revealed that luteolin could form hydrogen bonds with Asp428,Val431,Gly429,Asp456,Lys458,Lys459,and other residues in the PFOR domain.The MIC of luteolin against C.difficile was approximately 32 μg·mL-1.Conclusion Luteolin exhibits good activity against C.difficile,and PFOR may be a target for its antibacterial action.
RESUMEN
Two variants of the enzyme family pyruvate:ferredoxin oxidoreductase (PFOR), derived from the anaerobic sulfate-reducing bacterium Desulfovibrio africanus and the extremophilic crenarchaeon Sulfolobus acidocaldarius, respectively, were evaluated for their capacity to fixate CO2 in vitro. PFOR reversibly catalyzes the conversion of acetyl-CoA and CO2 to pyruvate using ferredoxin as redox partner. The oxidative decarboxylation of pyruvate is thermodynamically strongly favored, and most previous studies only considered the oxidative direction of the enzyme. To assay the pyruvate synthase function of PFOR during reductive carboxylation of acetyl-CoA is more challenging and requires to maintain the reaction far from equilibrium. For this purpose, a biochemical assay was established where low-potential electrons were introduced by photochemical reduction of EDTA/deazaflavin and the generated pyruvate was trapped by chemical derivatization with semicarbazide. The product of CO2 fixation could be detected as pyruvate semicarbazone by HPLC-MS. In a combinatorial approach, both PFORs were tested with ferredoxins from different sources. The pyruvate semicarbazone product could be detected with low-potential ferredoxins of the green sulfur bacterium Chlorobium tepidum and of S. acidocaldarius whereas CO2 fixation was not supported by the native ferredoxin of D. africanus. Methylviologen as an artificial electron carrier also allowed CO2 fixation. For both enzymes, the results are the first demonstration of CO2 fixation in vitro. Both enzymes exhibited high stability in the presence of oxygen during purification and storage. In conclusion, the employed PFOR enzymes in combination with non-native ferredoxin cofactors might be promising candidates for further incorporation in biocatalytic CO2 conversion. ENZYMES: EC1.2.7.1. Pyruvate:Ferredoxin Oxidoreductase.
Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Desulfovibrio/enzimología , Piruvato-Sintasa/metabolismo , Sulfolobus/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dinitrocresoles/química , Ácido Edético/química , Electrones , Oxidación-Reducción , Paraquat/química , Piruvato-Sintasa/química , Piruvato-Sintasa/genética , Semicarbacidas/químicaRESUMEN
BACKGROUND: Blastocystis spp. are the most prevalent intestinal eukaryotes identified in humans, with at least 17 genetic subtypes (ST) based on genes coding for the small-subunit ribosomal RNA (18S). It has been argued that the 18S gene should not be the marker of choice to discriminate between STs of these strains because this marker exhibits high intra-genomic polymorphism. By contrast, pyruvate:ferredoxin oxidoreductase (PFOR) is a relevant enzyme involved in the core energy metabolism of many anaerobic microorganisms such as Blastocystis, which, in other protozoa, shows more polymorphisms than the 18S gene and thus may offer finer discrimination when trying to identify Blastocystis ST. Therefore, the objective of the present study was to assess the suitability of the PFOR gene as an additional marker to discriminate among Blastocystis strains or subtypes from symptomatic carrier children. METHODS: Faecal samples from 192 children with gastrointestinal symptoms from the State of Mexico were submitted for coprological study. Twenty-one of these samples were positive only for Blastocystis spp.; these samples were analysed by PCR sequencing of regions of the 18S and PFOR genes. The amplicons were purified and sequenced; afterwards, both markers were assessed for genetic diversity. RESULTS: The 18S analysis showed the following frequencies of Blastocystis subtypes: ST3 = 43%; ST1 = 38%; ST2 = 14%; and ST7 = 5%. Additionally, using subtype-specific primer sets, two samples showed mixed Blastocystis ST1 and ST2 infection. For PFOR, Bayesian inference revealed the presence of three clades (I-III); two of them grouped different ST samples, and one grouped six samples of ST3 (III). Nucleotide diversity (π) and haplotype polymorphism (θ) for the 18S analysis were similar for ST1 and ST2 (π = ~0.025 and θ = ~0.036); remarkably, ST3 showed almost 10-fold lower values. For PFOR, a similar trend was found: clade I and II had π = ~0.05 and θ = ~0.05, whereas for clade III, the values were almost 6-fold lower. CONCLUSIONS: Although the fragment of the PFOR gene analysed in the present study did not allow discrimination between Blastocystis STs, this marker grouped the samples in three clades with strengthened support, suggesting that PFOR may be under different selective pressures and evolutionary histories than the 18S gene. Interestingly, the ST3 sequences showed lower variability with probable purifying selection in both markers, meaning that evolutionary forces drive differential processes among Blastocystis STs.
Asunto(s)
Infecciones por Blastocystis/parasitología , Blastocystis/clasificación , Variación Genética , Parasitosis Intestinales/parasitología , Piruvato-Sintasa/genética , Adolescente , Teorema de Bayes , Blastocystis/enzimología , Blastocystis/genética , Niño , Preescolar , Heces/parasitología , Femenino , Haplotipos , Humanos , Lactante , Masculino , México , Filogenia , Polimorfismo Genético , Proteínas Protozoarias/genéticaRESUMEN
BACKGROUND: Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS: Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS: Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.
RESUMEN
A bisoxyphenylene-bisbenzimidazole series with increasing aliphatic chain length (CH2 to C10 H20 ) containing a meta- (m) or para (p)-benzimidazole linkage to the phenylene ring was tested for ability to inhibit the growth of metronidazole-susceptible (C1) and metronidazole-refractory (085) Trichomonas vaginalis isolates under aerobic and anaerobic conditions. Compound 3m, 2,2'-[α,ω-propanediylbis(oxy-1,3-phenylene)]bis-1H-benzimidazole, displayed a 5.5-fold lower minimum inhibitory concentration (MIC) toward T. vaginalis isolate 085 than metronidazole under aerobic growth conditions, (26 µm compared to 145 µm). A dose of 25 mg/kg per day for four days of compound 3m cured a subcutaneous mouse model infection using T. vaginalis isolates 286 (metronidazole susceptible) and 085 (metronidazole refractory). Compound 3m was weakly reduced by pyruvate:ferredoxin oxidoreductase, but unlike metronidazole was not dependent upon added ferredoxin. It is concluded from structure-activity relationships that there was no obvious trend based on the length of the central aliphatic chain, or the steric position of the bisbenzimidazole enabling prediction of biological activity. The compounds generally fulfill Lipinski's rile of five, indicating their potential as drug leads.
Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Bisbenzimidazol/análogos & derivados , Bisbenzimidazol/uso terapéutico , Resistencia a Medicamentos , Vaginitis por Trichomonas/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Bisbenzimidazol/farmacología , Línea Celular Tumoral , Femenino , Humanos , Metronidazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Trichomonas vaginalis/crecimiento & desarrolloRESUMEN
BACKGROUND: Sphaeralcea angustifolia (Malvaceae) is extensively used in Mexican traditional medicine for the treatment of gastrointestinal disorders such as diarrhea and dysentery. OBJECTIVE: The current study was to validate the traditional use of S. angustifolia for the treatment of diarrhea and dysentery on biological grounds using in vitro antiprotozoal activity and computational experiments. MATERIALS AND METHODS: The ethanol extract, subsequent fractions, flavonoids, phenolic acids, and a sterol were evaluated on Entamoeba histolytica and Giardia lamblia trophozoites. Moreover, molecular docking studies on tiliroside were performed; it was tested for its affinity against pyruvate:ferredoxin oxidoreductase (PFOR) and fructose-1,6-bisphosphate aldolase (G/FBPA), two glycolytic enzymes of anaerobic protozoa. RESULTS: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives tiliroside and apigenin, caffeic acid, protocatechuic acid, and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with 50% inhibitory concentration values of 17.5 µg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases, tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 µM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol and 55.5 µM, respectively), like to metronidazole, revealing its potential binding mode at molecular level. CONCLUSION: The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of S. angustifolia. Its in vitro antiprotozoal activities are in good agreement with the traditional medicinal use of S. angustifolia in gastrointestinal disorders such as diarrhea and dysentery. SUMMARY: Bioassay-guided fractionation of extract of the aerial parts of S. angustifolia gives: tiliroside and apigenin, caffeic acid, protocatechuic acid) and ß-sitosterol. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiprotozoal compound on both protozoa with IC50 values of 17.5 mg/mL for E. histolytica and 17.4 µg/mL for G. lamblia. Molecular docking studies using tiliroside showed its probable antiprotozoal mechanism with PFOR and G/FBPA. In both cases tiliroside showed high affinity and inhibition constant theoretic for PFOR (lowest free binding energy from -9.92 kcal/mol and 53.57 mM, respectively) and G/FBPA (free binding energy from -7.17 kcal/mol, respectively and 55.5 µM), like to metronidazole, revealing its potential binding mode at molecular level. The results suggest that tiliroside seems to be a potential antiprotozoal compound responsible for antiamoebic and antigiardial activities of Sphaeralcea angustifolia. Abbreviations Used: PFOR: Pyruvate:ferredoxin oxidoreductase; G/FBPA: Fructose 1,6 bisphosphate aldolase.
RESUMEN
Pyruvate ferredoxin oxidoreductase from Citrobacter sp. S-77 (PFORS77) was purified in order to develop a method for acetyl-CoA production. Although the purified PFORS77 showed high O2-sensitivity, the activity could be remarkably stabilized in anaerobic conditions. PFORS77 was effectively immobilized on ceramic hydroxyapatite (PFORS77-HA) with an efficiency of more than 96%, however, after encapsulation of PFORS77-HA in alginate, the rate of catalytic acetyl-CoA production was highly reduced to 36% when compared to that of the free enzyme. However, the operational stability of the PFORS77-HA in alginate hydrogels was remarkable, retaining over 68% initial activity even after ten repeated cycles. The results suggested that the PFORS77-HA hydrogels have a high potential for biotechnological application.
Asunto(s)
Acetilcoenzima A/síntesis química , Alginatos/química , Hidrogeles/química , Piruvato-Sintasa/química , Catálisis , Citrobacter/enzimología , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Piruvato-Sintasa/metabolismoRESUMEN
After a brief discussion of my graduate work at Duke University, I describe a series of investigations on redox proteins at the University of California, Berkeley. Starting with ferredoxin from fermentative bacteria, the Berkeley research fostered experiments that uncovered a pathway for fixing CO2 in bacterial photosynthesis. The carbon work, in turn, opened new vistas, including the discovery that thioredoxin functions universally in regulating the Calvin-Benson cycle in oxygenic photosynthesis. These experiments, which took place over a 50-year period, led to the formulation of a set of biological principles and set the stage for research demonstrating a role for redox in the regulation of previously unrecognized processes extending far beyond photosynthesis.
Asunto(s)
Carbono/metabolismo , Chlorobium/fisiología , Cloroplastos/metabolismo , Ferredoxinas/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Tiorredoxinas/metabolismo , Dióxido de Carbono/metabolismo , Chlorobium/metabolismo , Ciclo del Ácido Cítrico , Ferredoxina-NADP Reductasa/metabolismo , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro/metabolismoRESUMEN
Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.