Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047730

RESUMEN

This study aimed to investigate the influence of genetic variants in neuroplasticity-related genes on antidepressant treatment phenotypes. The BDNF-TrkB signaling pathway, as well as the downstream kinases Akt and ERK and the mTOR pathway, have been implicated in depression and neuroplasticity. However, clinicians still struggle with the unpredictability of antidepressant responses in depressed patients. We genotyped 26 polymorphisms in BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 in 80 patients with major depressive disorder treated according to the Texas Medical Algorithm for 27 months at Hospital Magalhães Lemos, Porto, Portugal. Our results showed that BDNF rs6265, PTEN rs12569998, and SYN1 rs1142636 SNP were associated with treatment-resistant depression (TRD). Additionally, MAPK1 rs6928 and GSK3B rs6438552 gene polymorphisms were associated with relapse. Moreover, we found a link between the rs6928 MAPK1 polymorphism and time to relapse. These findings suggest that the BDNF, PTEN, and SYN1 genes may play a role in the development of TRD, while MAPK1 and GSK3B may be associated with relapse. GO analysis revealed enrichment in synaptic and trans-synaptic transmission pathways and glutamate receptor activity with TRD-associated genes. Genetic variants in these genes could potentially be incorporated into predictive models of antidepressant response.


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Humanos , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/genética , Receptores de Factor de Crecimiento Nervioso/genética , Recurrencia , Serina-Treonina Quinasas TOR/genética
2.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328505

RESUMEN

The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that-depending on the involvement of tissue-specific enhancers-the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.


Asunto(s)
Genes Homeobox , Discapacidad Intelectual , Animales , Niño , Proteínas de Homeodominio/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Curr Issues Mol Biol ; 44(1): 206-221, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35723394

RESUMEN

With the wide application of microwave technology, concerns about its health impact have arisen. The signal transmission mode of the central nervous system and neurons make it particularly sensitive to electromagnetic exposure. It has been reported that abnormal release of amino acid neurotransmitters is mediated by alteration of p-SYN1 after microwave exposure, which results in cognitive dysfunction. As the phosphorylation of SYN1 is regulated by different kinases, in this study we explored the regulatory mechanisms of SYN1 fluctuations following microwave exposure and its subsequent effect on GABA release, aiming to provide clues on the mechanism of cognitive impairment caused by microwave exposure. In vivo studies with Timm and H&E staining were adopted and the results showed abnormality in synapse formation and neuronal structure, explaining the previously-described deficiency in cognitive ability caused by microwave exposure. The observed alterations in SYN1 level, combined with the results of earlier studies, indicate that SYN1 and its phosphorylation status (ser-553 and ser62/67) may play a role in the abnormal release of neurotransmitters. Thus, the role of Cdk5, the upstream kinase regulating the formation of p-SYN1 (ser-553), as well as that of MEK, the regulator of p-SYN1 (ser-62/67), were investigated both in vivo and in vitro. The results showed that Cdk5 was a negative regulator of p-SYN1 (ser-553) and that its up-regulation caused a decrease in GABA release by reducing p-SYN1 (ser-553). While further exploration still needed to elaborate the role of p-SYN1 (ser-62/67) for neurotransmitter release, MEK inhibition had was no impact on p-Erk or p-SYN1 (ser-62/67) after microwave exposure. In conclusion, the decrease of p-SYN1 (ser-553) may result in abnormalities in vesicular anchoring and GABA release, which is caused by increased Cdk5 regulated through Calpain-p25 pathway after 30 mW/cm2 microwave exposure. This study provided a potential new strategy for the prevention and treatment of microwave-induced cognitive dysfunction.

4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830471

RESUMEN

Cardiovascular diseases (CVD), with myocardial infarction (MI) being one of the crucial components, wreak havoc in developed countries. Advanced imaging technologies are required to obtain quick and widely available diagnostic data. This paper describes a multimodal approach to in vivo perfusion imaging using the novel SYN1 tracer based on the fluorine-18 isotope. The NOD-SCID mice were injected intravenously with SYN1 or [18F] fluorodeoxyglucose ([18F]-FDG) radiotracers after induction of the MI. In all studies, the positron emission tomography-computed tomography (PET/CT) technique was used. To obtain hemodynamic data, mice were subjected to magnetic resonance imaging (MRI). Finally, the biodistribution of the SYN1 compound was performed using Wistar rat model. SYN1 showed normal accumulation in mouse and rat hearts, and MI hearts correctly indicated impaired cardiac segments when compared to [18F]-FDG uptake. In vivo PET/CT and MRI studies showed statistical convergence in terms of the size of the necrotic zone and cardiac function. This was further supported with RNAseq molecular analyses to correlate the candidate function genes' expression, with Serpinb1c, Tnc and Nupr1, with Trem2 and Aldolase B functional correlations showing statistical significance in both SYN1 and [18F]-FDG. Our manuscript presents a new fluorine-18-based perfusion radiotracer for PET/CT imaging that may have importance in clinical applications. Future research should focus on confirmation of the data elucidated here to prepare SYN1 for first-in-human trials.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Corazón/diagnóstico por imagen , Infarto del Miocardio/genética , Proteínas de Neoplasias/genética , Serpinas/genética , Tenascina/genética , Animales , Medios de Contraste/farmacología , Fluorodesoxiglucosa F18/farmacología , Fructosa-Bifosfato Aldolasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Infarto del Miocardio/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Receptores Inmunológicos/genética , Distribución Tisular/efectos de los fármacos
5.
BMC Mol Biol ; 19(1): 13, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463513

RESUMEN

BACKGROUND: Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype-based approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses were performed using RNA microarray chips and the isotope-coded protein label method (ICPL). RESULTS: As described in other cancers, we found a poor correlation between transcriptome and proteome data in GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, the intrinsic properties of mRNA and proteins and/or of cancer- or GB-specific phenomena. Of interest, the analysis of the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified by ICPL method shows a common binding site for the topoisomerase I and p53-binding protein TOPORS. Its expression was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor suppressor; its implication in gliomagenesis should be examined in future studies. CONCLUSIONS: In this study, we showed a low correlation between transcriptome and proteome data for GB samples as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in both the transcriptome and proteome data. It will be important to analyze more specifically these processes and these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB.


Asunto(s)
Glioblastoma/genética , Glioblastoma/metabolismo , Proteoma , Transcriptoma , Anciano , Estudios de Casos y Controles , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Anotación de Secuencia Molecular , Especificidad de Órganos , Proteómica
6.
J Cell Mol Med ; 21(11): 2974-2984, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28524599

RESUMEN

Huntington's disease (HD) is caused by a genetically mutated huntingtin (mHtt) protein with expanded polyQ stretch, which impairs cytosolic sequestration of the repressor element-1 silencing transcription factor (REST), resulting in excessive nuclear REST and subsequent repression of neuronal genes. We recently demonstrated that REST undergoes extensive, context-dependent alternative splicing, of which exon-3 skipping (∆E3 )-a common event in human and nonhuman primates-causes loss of a motif critical for REST nuclear targeting. This study aimed to determine whether ∆E3 can be targeted to reduce nuclear REST and rescue neuronal gene expression in mouse striatal-derived, mHtt-expressing STHdhQ111/Q111 cells-a well-established cellular model of HD. We designed two morpholino antisense oligos (ASOs) targeting the splice sites of Rest E3 and examined their effects on ∆E3 , nuclear Rest accumulation and Rest-controlled gene expression in STHdhQ111/Q111 cells. We found that (1) the ASOs treatment significantly induced ∆E3 , reduced nuclear Rest, and rescued transcription and/or mis-splicing of specific neuronal genes (e.g. Syn1 and Stmn2) in STHdhQ111/Q111 cells; and (2) the ASOs-induced transcriptional regulation was dependent on ∆E3 induction and mimicked by siRNA-mediated knock-down of Rest expression. Our findings demonstrate modulation of nuclear REST by ∆E3 and its potential as a new therapeutic target for HD and provide new insights into environmental regulation of genome function and pathogenesis of HD. As ∆E3 is modulated by cellular signalling and linked to various types of cancer, we anticipate that ∆E3 contributes to environmentally tuned REST function and may have a broad range of clinical implications.


Asunto(s)
Empalme Alternativo , Núcleo Celular/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Proteínas Represoras/genética , Animales , Proteínas de Unión al Calcio , Línea Celular , Cuerpo Estriado/patología , Exones , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Terapia Molecular Dirigida , Morfolinos/genética , Morfolinos/metabolismo , Neuronas/patología , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Estatmina
7.
Front Neurol ; 15: 1359287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576531

RESUMEN

The SYN1 gene encodes synapsin I, variants within the SYN1 gene are linked to X-linked neurodevelopmental disorders with high clinical heterogeneity, with reflex epilepsies (REs) being a representative clinical manifestation. This report analyzes a Chinese pedigree affected by seizures associated with SYN1 variants and explores the genotype-phenotype correlation. The proband, a 9-year-old boy, experienced seizures triggered by bathing at the age of 3, followed by recurrent absence seizures, behavioral issues, and learning difficulties. His elder brother exhibited a distinct clinical phenotype, experiencing sudden seizures during sleep at the age of 16, accompanied by hippocampal sclerosis. Whole exome sequencing (WES) confirmed a pathogenic SYN1 variant, c.1647_1650dup (p. Ser551Argfs*134), inherited in an X-linked manner from their mother. Notably, this variant displayed diverse clinical phenotypes in the two brothers and one previously reported case in the literature. Retrospective examination of SYN1 variants revealed an association between truncating variants and the pathogenicity of REs, and non-truncating variants are more related to developmental delay/intellectual disability (DD/ID). In summary, this study contributes to understanding complex neurodevelopmental disorders associated with SYN1, highlighting the clinical heterogeneity of gene variants and emphasizing the necessity for comprehensive genetic analysis in elucidating the pathogenic mechanisms of such diseases.

8.
Front Vet Sci ; 11: 1430919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188903

RESUMEN

Mass treatment with antibiotics at arrival has been the mainstay for bovine respiratory disease (BRD) control but there is an increase in antimicrobial-resistant bacteria being shed from treated cattle. BRD is a disease complex that results from the interaction of viruses or bacteria and susceptible animals with inappropriate immunity. With bacteria being the only feasibly treatable agent and the emergence of antimicrobial resistance, decreased efficacy of commonly used antibiotics could threaten livestock health. There is a need for new antimicrobial alternatives that could be used to control disease. Naturally occurring antimicrobial peptides (AMP) have been proposed to address this need. Here we tested the effect of bovine myeloid antimicrobial peptide-28 (BMAP-28), a synthetic BMAP-28 analog Syn-1, and bactenecin 5 (Bac-5) on Mannheimia haemolytica (Mh) using a quantitative culture method and the broth microdilution method to determine minimum inhibitory and bactericidal concentrations (MIC and MBC). We also tested the antiviral effect of these AMP against bovine herpes-1 (BHV-1) and bovine respiratory syncytial virus (BRSV) using the Reed and Muench method to calculate the viral titers after treatment. We demonstrated that BMAP-28 and Syn-1 can inhibit Mh growth and BMAP-28 can inhibit replication of BHV-1 and BRSV. Moreover, we showed that BMAP-28 and Bac-5 can be used together to inhibit Mh growth. When used alone, the MIC of BMAP-28 and Bac-5 was 64 and 128 µg/mL respectively, but when applied together, their MIC ranged from 0.25-16 for BMAP-28 and 8-64 µg/mL for Bac-5, resulting in a decrease in concentration of up to 256 and 16-fold, respectively. The synergistic interaction between those peptides resulted in concentrations that could be well tolerated by cells. Our results demonstrate that bovine cathelicidins could be used as alternatives to antimicrobials against BRD pathogens. These findings introduce a path to discovering new antimicrobials and determining how these peptides could be tailored to improve cattle health.

10.
Curr Alzheimer Res ; 20(9): 648-659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213171

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a persistent neuropathological injury that manifests via neuronal/synaptic death, age spot development, tau hyperphosphorylation, neuroinflammation, and apoptosis. Synapsin 1 (SYN1), a neuronal phosphoprotein, is believed to be responsible for the pathology of AD. OBJECTIVE: This study aimed to elucidate the exact role of SYN1 in ameliorating AD and its potential regulatory mechanisms. METHODS: The AD dataset GSE48350 was downloaded from the GEO database, and SYN1 was focused on differential expression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After establishing an AD rat model, they were treated with RNAi lentivirus to trigger SYN1 overexpression. The amelioration of SYN1 in AD-associated behavior was validated using multiple experiments (water maze test and object recognition test). SYN1's repairing effect on the important factors in AD was confirmed by detecting the concentration of inflammatory factors (interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α), neurotransmitters (acetylcholine (ACh), dopamine (DA), and 5-hydroxytryptophan (5-HT)) and markers of oxidative stress (glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS)). Molecular biology experiments (qRT-PCR and western blot) were performed to examine AD-related signaling pathways after SYN1 overexpression. RESULTS: Differential expression analysis yielded a total of 545 differentially expressed genes, of which four were upregulated and 541 were downregulated. The enriched pathways were basically focused on synaptic functions, and the analysis of the protein- protein interaction network focused on the key genes in SYN1. SYN1 significantly improved the spatial learning and memory abilities of AD rats. This enhancement was reflected in the reduced escape latency of the rats in the water maze, the significantly extended dwell time in the third quadrant, and the increased number of crossings. Furthermore, the results of the object recognition test revealed reduced time for rats to explore familiar and new objects. After SYN1 overexpression, the cAMP signaling pathway was activated, the phosphorylation levels of the CREB and PKA proteins were elevated, and the secretion of neurotransmitters such as ACh, DA, and 5-HT was promoted. Furthermore, oxidative stress was suppressed, as supported by decreased levels of MDA and ROS. Regarding inflammatory factors, the levels of IL-6, IL-1ß, and TNF-α were significantly reduced in AD rats with SYN1 overexpression. CONCLUSION: SYN1 overexpression improves cognitive function and promotes the release of various neurotransmitters in AD rats by inhibiting oxidative stress and inflammatory responses through cAMP signaling pathway activation. These findings may provide a theoretical basis for the targeted diagnosis and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratas , Animales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Sinapsinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias , Serotonina/metabolismo , Disfunción Cognitiva/genética , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neurotransmisores , Modelos Animales de Enfermedad
11.
Neuropharmacology ; 237: 109602, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290534

RESUMEN

Cannabidiol (CBD) has been recently approved as an antiseizure agent in Dravet Syndrome (DS), a pediatric epileptic encephalopathy, but CBD could also be active against associated comorbidities. Such associated comorbidities were also attenuated by the sesquiterpene ß-caryophyllene (BCP). Here, we have compared the efficacy of both compounds and further initiated the analysis of a possible additive effect between both compounds in relation with these comorbidities using two experimental approaches. The first experiment was aimed at comparing the benefits of CBD and BCP, including their combination in conditional knock-in Scn1a-A1783V mice, an experimental model of DS, treated since the postnatal day 10th to 24th. As expected, DS mice showed impairment in limb clasping, delay in the appearance of hindlimb grasp reflex and additional behavioural disturbances (e.g., hyperactivity, cognitive deterioration, social interaction deficits). This behavioural impairment was associated with marked astroglial and microglial reactivities in the prefrontal cortex and the hippocampal dentate gyrus. BCP and CBD administered alone were both able to partially attenuate the behavioural disturbances and the glial reactivities, with apparently greater efficacy against glial reactivities obtained with BCP, whereas superior effects in a few specific parameters were obtained when both compounds were combined. In the second experiment, we investigated this additive effect in cultured BV2 cells treated with BCP and/or CBD and stimulated with LPS. As expected, addition of LPS induced a marked increase in several inflammation-related markers (e.g., TLR4, COX-2, iNOS, catalase, TNF-α, IL-1ß), as well as elevated Iba-1 immunostaining. Treatment with BCP or CBD attenuated these elevations, but, again and in general, superior results were obtained when both cannabinoids were combined. In conclusion, our results support the interest to continue investigating the combination of BCP and CBD to improve the therapeutic management of DS in relation with their disease-modifying properties.


Asunto(s)
Cannabidiol , Epilepsias Mioclónicas , Ratones , Animales , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Lipopolisacáridos , Epilepsias Mioclónicas/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.1
12.
Front Cell Dev Biol ; 10: 1019715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568968

RESUMEN

Synapsin-I (SYN1) is a presynaptic phosphoprotein crucial for synaptogenesis and synaptic plasticity. Pathogenic SYN1 variants are associated with variable X-linked neurodevelopmental disorders mainly affecting males. In this study, we expand on the clinical and molecular spectrum of the SYN1-related neurodevelopmental disorders by describing 31 novel individuals harboring 22 different SYN1 variants. We analyzed newly identified as well as previously reported individuals in order to define the frequency of key features associated with these disorders. Specifically, behavioral disturbances such as autism spectrum disorder or attention deficit hyperactivity disorder are observed in 91% of the individuals, epilepsy in 82%, intellectual disability in 77%, and developmental delay in 70%. Seizure types mainly include tonic-clonic or focal seizures with impaired awareness. The presence of reflex seizures is one of the most representative clinical manifestations related to SYN1. In more than half of the cases, seizures are triggered by contact with water, but other triggers are also frequently reported, including rubbing with a towel, fever, toothbrushing, fingernail clipping, falling asleep, and watching others showering or bathing. We additionally describe hyperpnea, emotion, lighting, using a stroboscope, digestive troubles, and defecation as possible triggers in individuals with SYN1 variants. The molecular spectrum of SYN1 variants is broad and encompasses truncating variants (frameshift, nonsense, splicing and start-loss variants) as well as non-truncating variants (missense substitutions and in-frame duplications). Genotype-phenotype correlation revealed that epileptic phenotypes are enriched in individuals with truncating variants. Furthermore, we could show for the first time that individuals with early seizures onset tend to present with severe-to-profound intellectual disability, hence highlighting the existence of an association between early seizure onset and more severe impairment of cognitive functions. Altogether, we present a detailed clinical description of the largest series of individuals with SYN1 variants reported so far and provide the first genotype-phenotype correlations for this gene. A timely molecular diagnosis and genetic counseling are cardinal for appropriate patient management and treatment.

13.
Autophagy ; 18(8): 2003-2005, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35343362

RESUMEN

Neurons depend on macroautophagy/autophagy to maintain cellular homeostasis, and loss of autophagy leads to neurodegeneration. To better understand the role of basal autophagy in neurons, we enriched autophagic vesicles from healthy adult mouse brain and performed mass spectrometry to identify cargos cleared by autophagy. We found that synaptic and mitochondrial proteins comprise nearly half of the unique AV cargos identified in brain. Similarly, synaptic and mitochondrial proteins are major cargos for basal autophagy in neurons. Strikingly, we noted a specific enrichment of mitochondrial nucleoids within neuronal autophagosomes, which occurs through a mechanism distinct from damage-associated mitophagy. Here, we discuss the implications of these findings for our understanding of homeostatic mechanisms in neurons and how the age-dependent decline of autophagy in neurons may contribute to the onset or progression of neurodegenerative disease.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas , Animales , Autofagia/fisiología , Homeostasis , Ratones , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Proteómica
14.
Exp Neurol ; 353: 114059, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35367456

RESUMEN

Major Depressive Disorder (MDD) with Peripartum Onset was classified in 2013 by the Diagnostic and Statistical Manual, Fifth Edition (DMS-5) and approved in 2019 by the World Health Organization (WHO). These diagnostic revisions call for the development of new animal models of maternal depression, emphasizing the pregnancy period. We have recently described a novel rat model of maternal MDD with a Peripartum Onset. Exposure to pre-gestational chronic mild stress (CMS) with repeated restrain resulted in maternal depressive-like behavior and impacted offspring's neurodevelopment. The present study examined gender differences in short- vs. long-term neurodevelopmental impact of pre-gestational maternal stress. Stress response was assessed in Sprague Dawley CMS-exposed dams (n=7) by metabolic, hormonal, and behavioral changes and compared to controls dams (n=7). Short-term impact of maternal stress on offspring was examined in terms of metabolic, neurodevelopmental, and behavioral tests in male (n=40) and female (n=35) adolescent offspring on a postnatal day (PD) 48; the long-term impact was assessed in adult male (n=13) and female (n=12) offspring on PD 225. Brain tissue was collected from adolescent and adult offspring for biochemical analysis. Maternal stress was associated with decreased body weight and increased urinary corticosterone during the pre-pregnancy period, but depressive-like behavior was delayed until later in pregnancy. No significant neurodevelopmental changes in suckling male or female offspring derived from the stress-exposed dams were observed. However, adolescent male and female offspring of stress-exposed dams displayed an increased depressive-like behavior and gender-dependent increase in anxiety-like behavior in female offspring. These changes were associated with a brain-region-specific increase in brain-derived neurotrophic factor (BDNF) protein and BDNF receptor (TrkB) mRNA in males. Behavioral changes observed in the adolescents receded in adult male and female offspring. However, plasma BDNF was elevated in stress-exposed adult female offspring. These results suggest that pre-gestational maternal stress is associated with gender-dependent short- vs. long-term neurodevelopmental impact in the offspring. Presented data are of significant public health relevance, and there is an urgent need for further research to confirm these findings and probe the underlying mechanisms.


Asunto(s)
Trastorno Depresivo Mayor , Efectos Tardíos de la Exposición Prenatal , Adolescente , Animales , Ansiedad/genética , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/etiología , Trastorno Depresivo Mayor/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Estrés Psicológico/complicaciones
15.
Diagnostics (Basel) ; 11(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34574038

RESUMEN

In this preliminary pilot study, we investigated the specific genes implicated in the therapeutic response to acupuncture in patients with Parkinson's disease (PD). Transcriptome alterations following acupuncture in blood samples collected during our previous clinical trial were analyzed along with the clinical data of six patients with PD, of which a representative patient was selected for transcriptomic analysis following acupuncture. We also examined the changes in the expression of PD biomarker genes known to be dysregulated in both the brain and blood of patients with PD. We validated these gene expression changes using quantitative real-time polymerase chain reaction (qPCR) in the blood of the remaining five patients with PD who received acupuncture treatment. Following acupuncture treatment, the transcriptomic alterations in the representative patient were similar to those induced by dopaminergic therapy. Among the PD biomarkers, ankyrin repeat domain 22 (ANKRD22), upregulated following dopaminergic therapy, and synapsin 1 (SYN1), a common gene marker for synaptic dysfunction in PD, were upregulated following acupuncture. These alterations correlated with changes in gait parameters in patients with PD. Our data suggest ANKRD22 and SYN1 as potential biomarkers to predict/monitor therapeutic responses to acupuncture in patients with PD, especially in those with gait disturbance. Further research is needed to confirm these findings in a large sample of patients with PD.

16.
BMC Med Genomics ; 14(1): 182, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243774

RESUMEN

BACKGROUND: SYN1 encodes synapsin I, which is a neuronal phosphoprotein involving in regulating axonogenesis and synaptogenesis. Variants in the gene have been associated with X-linked neurodevelopmental disorders in recent years. METHODS: In the study, we reported two male patients with familial SYN1 variants related neurodevelopmental disorders from Asian population. Previously published cases with significant SYN1 variants from the literature were also included to analyze the phenotype and genotype of the disorder. RESULTS: Two maternally inherited SYN1 variants, including c.C1076A, p.T359K in proband A and c.C1444T, p. Q482X in proband B (NM_133499) were found, which have never been described in detail. Combining with our research, all reported probands were male in the condition, whose significant SYN1 variants were inherited from their asymptomatic or mild affected mother. Although the disorder encompasses three main clinical presentations: mental deficiency, easily controlled reflex seizure and behavior problems, patients' clinical manifestations vary in genders and individuals, even in the same pedigree. CONCLUSION: We firstly reported two familial SYN1-related neurodevelopmental disorders in Asian pediatric patients. Gender and phenotype differences should be highly valued in the disorder.


Asunto(s)
Trastornos del Neurodesarrollo
17.
Cells ; 10(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922505

RESUMEN

Neurodegenerative diseases are pathologies of the central and peripheral nervous systems characterized by loss of brain functions and problems in movement which occur due to the slow and progressive degeneration of cellular elements. Several neurodegenerative diseases are known such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many studies on the molecular mechanisms underlying these pathologies have been conducted. Altered functions of some key proteins and the presence of intraneuronal aggregates have been identified as responsible for the development of the diseases. Interestingly, the formation of the SNARE complex has been discovered to be fundamental for vesicle fusion, vesicle recycling and neurotransmitter release. Indeed, inhibition of the formation of the SNARE complex, defects in the SNARE-dependent exocytosis and altered regulation of SNARE-mediated vesicle fusion have been associated with neurodegeneration. In this review, the biological aspects of neurodegenerative diseases and the role of SNARE proteins in relation to the onset of these pathologies are described.


Asunto(s)
Exocitosis , Fusión de Membrana , Enfermedades Neurodegenerativas/fisiopatología , Proteínas SNARE/metabolismo , Transmisión Sináptica , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo
18.
Front Neurol ; 12: 736977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616357

RESUMEN

Toothbrushing epilepsy is a rare form of reflex epilepsy (RE) with sporadic incidence. To characterize the genetic profile of reflex epilepsy patients with tooth brushing-induced seizures in a Chinese family. Solo clinical whole-exome sequencing (WES) of the proband, a 37-year-old Chinese man, was performed to characterize the genetic etiology of toothbrushing epilepsy. Mutations in the maternal X-linked synapsin 1 (SYN1) identified in the proband and his family members were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined using in silico analysis. The proband had four episodes of toothbrushing-induced seizures. The semiology included nausea, twitching of the right side of the mouth and face, followed by a generalized tonic-clonic seizure (GTCS). The proband's elder maternal uncle had three toothbrushing-induced epileptic seizures at the age of 26. The proband's younger maternal uncle had no history of epileptic seizures but had a learning disability and aggressive tendencies. We identified a deleterious nonsense mutation, c.1807C>T (p.Q603Ter), in exon 12 of the SYN1 gene (NM_006950), which can result in a truncated SYN1 phosphoprotein with altered flexibility and hydropathicity. This novel mutation has not been reported in the 1000G, EVS, ExAC, gnomAD, or HGMD databases. We identified a novel X-linked SYN1 exon 12 mutant gene in a Chinese family with toothbrushing epilepsy. Our findings provide novel insights into the mechanism of this complex form of reflex epilepsy that could potentially be applied in disease diagnosis.

19.
Front Neurol ; 12: 685802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512509

RESUMEN

Widespread transduction of the CNS with a single, non-invasive systemic injection of adeno-associated virus is now possible due to the creation of blood-brain barrier-permeable capsids. However, as these capsids are mutants of AAV9, they do not have specific neuronal tropism. Therefore, it is necessary to use genetic tools to restrict expression of the transgene to neuronal tissues. Here we compare the strength and specificity of two neuron-specific promoters, human synapsin 1 and mouse calmodulin/calcium dependent kinase II, to the ubiquitous CAG promoter. Administration of a high titer of virus is necessary for widespread CNS transduction. We observed the neuron-specific promoters drive comparable overall expression in the brain to the CAG promoter. Furthermore, the neuron-specific promoters confer significantly less transgene expression in peripheral tissues compared with the CAG promoter. Future experiments will utilize these delivery platforms to over-express the Alzheimer-associated pathological proteins amyloid-beta and tau to create mouse models without transgenesis.

20.
Phytochemistry ; 186: 112732, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33761377

RESUMEN

Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatography of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcohols (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds. The structural/stereochemical elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatographic retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatographic fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and ß-methyl substituted fatty acids were detected herein for the first time in the kingdom Plantae.


Asunto(s)
Primula , Primulaceae , Alcoholes , Cromatografía de Gases , Ácidos Grasos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda