Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759822

RESUMEN

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Asunto(s)
Elementos Alu/fisiología , Histonas/metabolismo , Factores de Transcripción TFIII/metabolismo , Acetilación , Elementos Alu/genética , Línea Celular , Cromatina/metabolismo , Cromatina/fisiología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Histonas/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/genética , Transcripción Genética/genética
2.
Exp Cell Res ; 423(2): 113467, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634744

RESUMEN

To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κß was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.


Asunto(s)
Vitronectina , Gelatina de Wharton , Humanos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Hipoxia/metabolismo , Cordón Umbilical , Vitronectina/metabolismo , Gelatina de Wharton/metabolismo , Células Madre
3.
Cell Mol Life Sci ; 80(1): 20, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576581

RESUMEN

Numerous mechanisms involved in promoting cancer cell survival under nutrient starvation have been described. Long noncoding RNAs (lncRNAs) have emerged as critical players in colorectal cancer (CRC) progression, but the role of lncRNAs in the progression of CRC under nutrient starvation has not been well clarified. Here, we identified a lncRNA, LINC01615, that was significantly upregulated in response to serum starvation. LINC01615 can contribute to the adaptation of CRC cells to serum-deprived conditions and enhance cell survival under similar conditions. LINC01615 activated the pentose phosphate pathway (PPP) under serum starvation, manifested as decreased ROS production and enhanced nucleotide and lipid synthesis. Glucose-6-phosphate dehydrogenase (G6PD) is a key rate-limiting enzyme of the PPP, and LINC01615 promoted G6PD expression by competitively binding with hnRNPA1 and facilitating G6PD pre-mRNA splicing. Moreover, we also found that serum starvation led to METTL3 degradation by inducing autophagy, which further increased the stability and level of LINC01615 in a m6A-dependent manner. LINC01615 knockdown combined with oxaliplatin achieved remarkable antitumor effects in PDO and PDX models. Collectively, our results demonstrated a novel adaptive survival mechanism permitting tumor cells to survive under limiting nutrient supplies and provided a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Vía de Pentosa Fosfato/genética , Supervivencia Celular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Oxaliplatino , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/genética
4.
Cryobiology ; 113: 104592, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827209

RESUMEN

Clinical development of cellular therapies, including mesenchymal stem/stromal cell (MSC) treatments, has been hindered by ineffective cryopreservation methods that result in substantial loss of post-thaw cell viability and function. Proposed solutions to generate high potency MSC for clinical testing include priming cells with potent cytokines such as interferon gamma (IFNγ) prior to cryopreservation, which has been shown to enhance post-thaw function, or briefly culturing to allow recovery from cryopreservation injury prior to administering to patients. However, both solutions have disadvantages: cryorecovery increases the complexity of manufacturing and distribution logistics, while the pleiotropic effects of IFNγ may have uncharacterized and unintended consequences on MSC function. To determine specific cellular functions impacted by cryoinjury, we first evaluated cell cycle status. It was discovered that S phase MSC are exquisitely sensitive to cryoinjury, demonstrating heightened levels of delayed apoptosis post-thaw and reduced immunomodulatory function. Blocking cell cycle progression at G0/G1 by growth factor deprivation (commonly known as serum starvation) greatly reduced post-thaw dysfunction of MSC by preventing apoptosis induced by double-stranded breaks in labile replicating DNA that form during the cryopreservation and thawing processes. Viability, clonal growth and T cell suppression function were preserved at pre-cryopreservation levels and were no different than cells prior to freezing or frozen after priming with IFNγ. Thus, we have developed a robust and effective strategy to enhance post-thaw recovery of therapeutic MSC.


Asunto(s)
Criopreservación , Linfocitos T , Humanos , Congelación , Criopreservación/métodos , Proliferación Celular , Ciclo Celular , Supervivencia Celular
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834191

RESUMEN

Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.


Asunto(s)
Antineoplásicos , Cannabidiol , Neoplasias Colorrectales , Humanos , Cisplatino/farmacología , Cannabidiol/farmacología , Línea Celular Tumoral , Apoptosis/genética , Perfilación de la Expresión Génica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sinergismo Farmacológico
6.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674708

RESUMEN

Periods of low energy supply are challenging conditions for organisms and cells during fasting or famine. Although changes in nutrient levels in the blood are first sensed by endothelial cells, studies on their metabolic adaptations to diminished energy supply are lacking. We analyzed the dynamic metabolic activity of human umbilical vein endothelial cells (HUVECs) in basal conditions and after serum starvation. Metabolites of glycolysis, the tricarboxylic acid (TCA) cycle, and the glycerol pathway showed lower levels after serum starvation, whereas amino acids had increased levels. A metabolic flux analysis with 13C-glucose or 13C-glutamine labeling for different time points reached a plateau phase of incorporation after 30 h for 13C-glucose and after 8 h for 13C-glutamine under both experimental conditions. Notably, we observed a faster label incorporation for both 13C-glucose and 13C-glutamine after serum starvation. In the linear range of label incorporation after 3 h, we found a significantly faster incorporation of central carbon metabolites after serum starvation compared to the basal state. These findings may indicate that endothelial cells develop increased metabolic activity to cope with energy deficiency. Physiologically, it can be a prerequisite for endothelial cells to form new blood vessels under unfavorable conditions during the process of angiogenesis in vivo.


Asunto(s)
Glutamina , Inanición , Humanos , Glutamina/metabolismo , Aminoácidos/metabolismo , Glucólisis , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo
7.
Proteomics ; 22(13-14): e2100168, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357760

RESUMEN

There is growing evidence for sex and gender differences in the clinical manifestation and outcomes of human diseases. Human primary endothelial cells represent a useful cardiovascular model to study sexual dimorphisms at the cellular level. Here, we analyzed sexual dimorphisms of the secretome after serum starvation using human umbilical vein endothelial cells (HUVECs) from twin pairs of the opposite sex to minimize the impact of varying genetic background. HUVECs were starved for 5 and 16 h, respectively, and proteins of the cell culture supernatants were analyzed by tandem mass spectrometry. Altogether, 960 extracellular proteins were identified of which 683 were amendable to stringent quantification. Significant alterations were observed for 455 proteins between long-term and short-term starvation and the majority were similar in both sexes. Only 5 proteins showed significant sex-specific regulation between long-versus short-term starvation. Furthermore, 19 unique proteins with significant sexual dimorphisms at the same time points of serum starvation were observed. A larger number of proteins, for example tissue factor inhibitor 2 (TFPI2), displayed higher levels in the supernatants of females compared to male cells after long term serum starvation that might point to higher adaptation capacity of female cells. The overall results demonstrate that male and female cells differ in their secretome.


Asunto(s)
Proteínas , Caracteres Sexuales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Proteínas/metabolismo , Factores Sexuales
8.
Toxicol Appl Pharmacol ; 447: 116084, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618033

RESUMEN

Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.


Asunto(s)
Cloroquina , Hidroxicloroquina , Animales , Cloroquina/farmacología , Cloroquina/uso terapéutico , Humanos , Hidroxicloroquina/farmacología , Ratones , Microglía , Oxidación-Reducción , Transducción de Señal
9.
BMC Womens Health ; 22(1): 474, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434569

RESUMEN

OBJECTIVES: Premature ovarian insufficiency (POI) refers to the decline and cessation of ovarian functions in women under 40 years of age. Melatonin (MT) acts as a protective for the ovary. This study elucidated the role of MT in autophagy of granulosa cells (GCs) in POI via modulating the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. METHODS: The expression levels of microRNA (miR)-15a-5p, signal transducer and activator of transcription 3 (Stat3), and relevant hormones in the clinically collected serum samples of POI patients and healthy controls were examined. Human ovarian granulosa-like tumor cells (KGN) underwent serum starvation (SS) treatment to induce POI cell models and then received MT treatment. The expression levels of miR-15a-5p, Stat3, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR in KGN cells were tested via quantitative real-time polymerase chain reaction and Western blotting. KGN cell viability was assessed by MTT assay and the protein levels of autophagy-related markers Beclin-1, microtubule-associated protein light chain 3 II/I, and p62 were detected by Western blotting. The binding relation between miR-15a-5p and Stat3 was verified via the dual-luciferase reporter gene assay. Functional rescue experiments were performed to probe the underlying role of miR-15a-5p/Stat3/the PI3K-Akt-mTOR pathway in KGN cell autophagy. RESULTS: miR-15a-5p was increased whilst Stat3 was decreased in the serum of POI patients and SS-induced KGN cells. MT inhibited miR-15a-5p and Stat3, activated the PI3K-Akt-mTOR pathway, and repressed cell autophagy in SS-induced KGN cells. miR-15a-5p targeted and repressed Stat3 expression. Upregulation of miR-15a-5p or downregulation of Stat3 or the PI3K-Akt-mTOR pathway promoted KGN cell autophagy. CONCLUSION: MT suppressed miR-15a-5p and activated Stat3 and the PI3K-Akt-mTOR pathway, finally impeding SS-induced autophagy of GCs.


Asunto(s)
Melatonina , Menopausia Prematura , MicroARNs , Insuficiencia Ovárica Primaria , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melatonina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , Serina-Treonina Quinasas TOR/metabolismo , Células de la Granulosa/metabolismo , Autofagia
10.
Biochem Genet ; 60(6): 2533-2551, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35589876

RESUMEN

Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in calcium/phosphorus metabolism and direct inhibition of bone and muscle growth. The aim of this study was to investigate the STC-1 gene with respect to the regulatory mechanisms of porcine growth metabolic pathways involving autophagy. Western blotting was used to detect the expression of autophagy and mitochondrial function-related proteins, and flow cytometry was used to detect mitochondrial function-related. Changes in the autophagosome and mitochondrial were observed by electron microscopy. The expression of the autophagy-related proteins was detected by confocal microscopy. The results showed that Pink1, Parkin and LC3B expression was increased; SQSTM1/P62 expression was reduced. Electron microscopy revealed that the cells in the serum starvation group all produced autophagosomes. The fluorescence intensity of GFP-LC3B and GFP-Parkin increased. The Bax/Bcl-2 ratio, Pink1 and Parkin protein levels were profoundly reduced in the STC-KO. In addition, the increase in Mfn2, OPA1, DRP1 and LC3B proteins was attenuated; the increase in the apoptosis rate and amount of active oxygen was attenuated; the decrease in membrane potential; the decrease in ATP was reversed; the fluorescence intensity of GFP-LC3B and GFP-Parkin was increased. These results indicate that autophagy can be caused by serum starvation. Knocking out the porcine STC-1 gene had an obvious antiapoptotic effect on cells, the inhibition of serum starvation-induced autophagy. This is the first study to show that the porcine STC-1 gene confers self-protection in the absence of nutrients. To provide a theoretical basis for studying the effect of STC-1 on pig growth and development.


Asunto(s)
Autofagia , Mitocondrias , Animales , Porcinos , Mitocondrias/genética , Mitocondrias/metabolismo , Autofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/genética
11.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142433

RESUMEN

To date, extracellular vesicles (EVs) have been extensively investigated as potential substitutes for cell therapy. Research has suggested their ability to overcome serious risks associated with the application of these cells. Although, the translation of EVs into clinical practice is hampered by the lack of a cheap reasonable way to obtain a clinically relevant number of EVs, an available method for the large-scale production of EVs ensures vesicles' integrity, preserves their biological activity, and ensures they are well reproducible, providing homogeneity of the product from batch to batch. In this review, advances in the development of methods to increase EVs production are discussed. The existing approaches can be divided into the following: (1) those based on increasing the production of natural EVs by creating and using high capacity "cell factories", (2) those based on the induction of EVs secretion under various cell stressors, and (3) those based on cell fragmentation with the creation of biomimetic vesicles. The aim of this review is to stimulate the introduction of EVs into clinical practice and to draw attention to the development of new methods of EVs production on a large scale.


Asunto(s)
Exosomas , Vesículas Extracelulares , Tratamiento Basado en Trasplante de Células y Tejidos
12.
J Biol Chem ; 295(36): 12796-12813, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32703900

RESUMEN

Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3ß phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.


Asunto(s)
Citoplasma/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas , Citoplasma/genética , Factores Eucarióticos de Iniciación/genética , Glucógeno Sintasa Quinasa 3/genética , Células HCT116 , Humanos , Fosforilación , Dominios Proteicos
13.
Cell Biol Int ; 45(5): 1091-1097, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33501699

RESUMEN

Small nucleolar RNAs (snoRNAs) are thought to be exclusively nuclear and guide nucleotide modifications of ribosomal RNAs. Recently, more and more evidence has suggested that the nucleolus is a stress sensor for changes in growth status and that snoRNAs may orchestrate the response to environmental stress through molecular interactions outside of the nucleus. We previously showed that a box C/D snoRNA Bm-15 had both nuclear and cytoplasmic location in BmN4 cell line of the silkworm, Bombyx mori. To further study the functional roles of Bm-15, changes in expression level and cellular location of Bm-15 were examined in BmN4 cells subjected to serum starvation and ultraviolet (UV) ray radiation. Results indicated that total RNA level of Bm-15 was unchanged after 24 h serum starvation, but exhibited 3-fold increases in the cytoplasm, and the nuclear-to-cytosolic distribution ratio was reduced from 5:1 to 2:1. Moreover, UV radiation also causes rapid decline in nuclear Bm-15 and progressive cytoplasmic accumulation with a percentage of 22% and 57% after 6 and 24 h UV radiation. UV treatment results in a dramatic decrease in Bm-15 nuclear-to-cytosolic ratio from 7:1 to 2:1 and 2:1 to 1:20 after 6 and 24 h UV radiation, respectively. We show here for the first time that box C/D snoRNAs can translocate from the nucleus to the cytoplasm under the abiotic stress of nutritional deficiency and UV radiation. The rapid translocation of snoRNAs from nucleus to cytoplasm may slow down the maturation of rRNAs and synthesis of ribosomes to enhance the stress resistance of cells.


Asunto(s)
Bombyx/genética , ARN Nucleolar Pequeño/metabolismo , Estrés Fisiológico/genética , Transporte Activo de Núcleo Celular/fisiología , Animales , Bombyx/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , ARN Nucleolar Pequeño/genética , Estrés Fisiológico/fisiología
14.
Reprod Domest Anim ; 56(2): 313-323, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33219627

RESUMEN

This study mainly explored the effects of Rapamycin on the growth of the Buffalo ear fibroblast (BEF) and embryonic developmental competence of somatic cell nuclear transfer (SCNT). The results show that the appropriate concentration (1 µM) of Rapamycin could significantly improve the proportion of the G0/G1 phase in BEF cells treated at a certain time (72 hr). Simultaneously, the percentage of the G0/G1 phase also was significantly higher than the serum starvation and control group. This may be related to Rapamycin inhibiting the phosphorylation of mTOR and affecting the expression of cell cycle-related genes (CDK2, CDK4, P27, CycleD1, and CycleD3). Besides, compared with the control group and serum-starved group, Rapamycin significantly decreased BEF cell apoptosis by reducing ROS generation. Moreover, these results also indicated that the proportion of BEF cells with normal chromosome multiples treated by Rapamycin is significantly higher than that of the serum-starved group (p < .05). Finally, this study explored the effects of Rapamycin and serum starvation on the embryonic developmental competence of SCNT. The results show that Rapamycin significantly increased the rate of 8-cell and blastocyst, compared with the control group and serum starvation group (p < .05). To summarize, these results indicate that Rapamycin improved the embryonic development competence of SCNT, which may be related to Rapamycin increasing the percentage of G0/G1 phase and maintaining BEF cell quality.


Asunto(s)
Búfalos/embriología , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Transferencia Nuclear/veterinaria , Sirolimus/farmacología , Animales , Apoptosis , Ciclo Celular/genética , Células Cultivadas , Embrión de Mamíferos/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Embarazo
15.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008474

RESUMEN

High-grade serous ovarian carcinoma (HGSOC) is the most frequent and malignant form of ovarian cancer. A local renin-angiotensin system (RAS) has been found in the ovary, and changes in selected components of this system were observed in pathological states and also in ovarian cancer. In the present study, we examined the effect of three peptides, Ang-(1-7), Ang-(1-9) and Ang-(3-7), on proliferation and motility of the OVPA8 cell line, a new well-defined and preclinical model of HGSOC. We confirmed the presence of mRNA for all angiotensin receptors in the tested cells. Furthermore, our findings indicate that all tested angiotensin peptides increased the metabolic serum in the medium by activation of cell defense mechanisms such as nuclear factor kappaB signaling pathway andapoptosis. Moreover, tested angiotensin peptides intensified serum starvation-induced cell cycle arrest at the G0/G1 phase. In the case of Ang-(3-7), a significant decrease in the number of Ki67 positive cells (Ki67+) and reduced percentage of activated ERK1/2 levels in ovarian cancer cells were additionally reported. The angiotensin-induced effect of the accumulation of cells in the G0/G1 phase was not observed in OVPA8 cells growing on the medium with 10% FBS. Moreover, in the case of Ang-(3-7), the tendency was quite the opposite. Ang-(1-7) but not Ang-(1-9) or Ang-(3-7) increased the mobility of reluctant-to-migrate OVAP8 cells cultured in the serum-free medium. In any cases, the changes in the expression of VIM and HIF1A gene, associated with epithelial-mesenchymal transition (EMT), were not observed. In conclusion, we speculate that the adaptation to starvation in nutrient-deprived tumors can be modulated by peptides from the renin-angiotensin system. The influence of angiotensin peptides on cancer cells is highly dependent on the availability of growth factors and nutrients.


Asunto(s)
Angiotensinas/farmacología , Supervivencia Celular/efectos de los fármacos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Péptidos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Fase G1/efectos de los fármacos , Humanos , Neoplasias Ováricas/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , ARN Mensajero/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
Cell Biol Int ; 44(8): 1588-1597, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32339363

RESUMEN

Cancer cells are confronted with nutrient deprivation because of high proliferation rate, especially at the early stage of their development. There is a frequent assumption that nutrient deprivation decreases the basal activity of cancer cells. Contrarily, there are recent evidence suggesting that cancer cells are able to modulate signaling pathways to adapt with new condition and continue their survival. This property of cancer cells is believed to be one of the prerequisites for cancer progression and chemoresistance. Moreover, recent experiments show that serum starvation in vitro as a mimic situation of nutrient deprivation in vivo triggers different signaling pathways leading to changes in cancer cell behavior, which may interfere with experimental results. Considering these facts, a better understanding of the effect of nutrient deprivation on cancer cell behavior will help us to give more accurate conclusions regarding results of in vitro studies and also to develop new strategies to treat different cancers in vivo.


Asunto(s)
Neoplasias/metabolismo , Movimiento Celular , Supervivencia Celular , Medio de Cultivo Libre de Suero , Resistencia a Antineoplásicos , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Nutrientes , Transducción de Señal
17.
J Cell Physiol ; 234(6): 7718-7724, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515823

RESUMEN

Serum starvation is a widely used condition in molecular biology experiments. Opti-MEM is a serum-reduced media used during transfection of genetic molecules into mammalian cells. However, the impact of such media on cell viability and protein synthesis is unknown. A549 human lung epithelial cell viability and morphology were adversely affected by growing in Opti-MEM. The cellular protein levels of chloride intracellular channel protein 1, proteasome subunit alpha Type 2, and heat shock 70 kDa protein 5 were dysregulated in A549 cells after growing in serum-reduced media. Small interfering RNA transfection was done in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum, and knockdown efficacy was determined compared with Opti-MEM. Similar amounts of knockdown of the target proteins were achieved in DMEM, and cell viability was higher compared with Opti-MEM after transfection. Careful consideration of the impact of Opti-MEM media during the culture or transfection is important for experimental design and results interpretation.


Asunto(s)
Supervivencia Celular/fisiología , Medios de Cultivo , Células Epiteliales/citología , Pulmón/citología , Células A549 , Recuento de Células/métodos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas/metabolismo , Humanos
18.
BMC Genomics ; 20(1): 206, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30866809

RESUMEN

BACKGROUND: Promoter motifs in Entamoeba histolytica were earlier analysed using microarray data with lower dynamic range of gene expression. Additionally, previous transcriptomic studies did not provide information on the nature of highly transcribed genes, and downstream promoter motifs important for gene expression. To address these issues we generated RNA-Seq data and identified the high and low expressing genes, especially with respect to virulence potential. We analysed sequences both upstream and downstream of start site for important motifs. RESULTS: We used RNA-Seq data to classify genes according to expression levels, which ranged six orders of magnitude. Data were validated by reporter gene expression. Virulence-related genes (except AIG1) were amongst the highly expressed, while some kinases and BspA family genes were poorly expressed. We looked for conserved motifs in sequences upstream and downstream of the initiation codon. Following enrichment by AME we found seven motifs significantly enriched in high expression- and three in low expression-classes. Two of these motifs (M4 and M6) were located downstream of AUG, were exclusively enriched in high expression class, and were mostly found in ribosomal protein, and translation-related genes. Motif deletion resulted in drastic down regulation of reporter gene expression, showing functional relevance. Distribution of core promoter motifs (TATA, GAAC, and Inr) in all genes revealed that genes with downstream motifs were not preferentially associated with TATA-less promoters. We looked at gene expression changes in cells subjected to growth stress by serum starvation, and experimentally validated the data. Genes showing maximum up regulation belonged to the low or medium expression class, and included genes in signalling pathways, lipid metabolism, DNA repair, Myb transcription factors, BspA, and heat shock. Genes showing maximum down regulation belonged to the high or medium expression class. They included genes for signalling factors, actin, Ariel family, and ribosome biogenesis factors. CONCLUSION: Our analysis has added important new information about the E. histolytica transcriptome. We report for the first time two downstream motifs required for gene expression, which could be used for over expression of E. histolytica genes. Most of the virulence-related genes in this parasite are highly expressed in culture.


Asunto(s)
Entamoeba histolytica/patogenicidad , Perfilación de la Expresión Génica/métodos , Factores de Virulencia/genética , Entamoeba histolytica/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
19.
Biosci Biotechnol Biochem ; : 1-6, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499630

RESUMEN

Serum starvation induces binucleation in HeLa cells, but the effects of serum starvation on mitosis and the significance of binucleation remain unknown. We investigated the effect of serum starvation on mitosis and analyzed the growth of binucleated cells. The frequency of binucleation caused by cytokinesis failure in DMEM without FBS (0% medium) was higher than that in DMEM with FBS (10% medium). In 0% medium, the metaphase spindle location was off-center, and RhoA localization significantly lacked symmetry. The frequency of the extension of intercellular bridge with the midbody in 0% medium was significantly higher than that in 10% medium. Moreover, all mononucleated mitotic cells caused bipolar mitosis and produced only mononucleated daughter cells, but binucleated cells produced various nucleated cells by multipolar mitosis in 0% medium. These results suggest that serum starvation may have various effects on mitosis, and binucleated cells may be related to formation of aneuploidy.

20.
Proc Natl Acad Sci U S A ; 111(41): E4315-22, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25261552

RESUMEN

Proliferation arrest and distinct developmental stages alter and decrease general translation yet maintain ongoing translation. The factors that support translation in these conditions remain to be characterized. We investigated an altered translation factor in three cell states considered to have reduced general translation: immature Xenopus laevis oocytes, mouse ES cells, and the transition state of proliferating mammalian cells to quiescence (G0) upon growth-factor deprivation. Our data reveal a transient increase of eukaryotic translation initiation factor 5B (eIF5B), the eukaryotic ortholog of bacterial initiation factor IF2, in these conditions. eIF5B promotes 60S ribosome subunit joining and pre-40S subunit proofreading. eIF5B has also been shown to promote the translation of viral and stress-related mRNAs and can contribute indirectly to supporting or stabilizing initiator methionyl tRNA (tRNA-Met(i)) association with the ribosome. We find that eIF5B is a limiting factor for translation in these three conditions. The increased eIF5B levels lead to increased eIF5B complexes with tRNA-Met(i) upon serum starvation of THP1 mammalian cells. In addition, increased phosphorylation of eukaryotic initiation factor 2α, the translation factor that recruits initiator tRNA-Meti for general translation, is observed in these conditions. Importantly, we find that eIF5B is an antagonist of G0 and G0-like states, as eIF5B depletion reduces maturation of G0-like, immature oocytes and hastens early G0 arrest in serum-starved THP1 cells. Consistently, eIF5B overexpression promotes maturation of G0-like immature oocytes and causes cell death, an alternative to G0, in serum-starved THP1 cells. These data reveal a critical role for a translation factor that regulates specific cell-cycle transition and developmental stages.


Asunto(s)
Puntos de Control del Ciclo Celular , Factores Eucarióticos de Iniciación/genética , Regulación hacia Arriba , Animales , Línea Celular , Supervivencia Celular , Medio de Cultivo Libre de Suero , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Ratones , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Biosíntesis de Proteínas , ARN de Transferencia de Metionina , Xenopus laevis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda