Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Free Radic Biol Med ; 191: 203-211, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084789

RESUMEN

The transcription factor BACH1 regulates the expression of a variety of genes including genes involved in oxidative stress responses, inflammation, cell motility, cancer cell invasion and cancer metabolism. Based on this, BACH1 has become a promising therapeutic target in cancer (as anti-metastatic target) and also in chronic conditions linked to oxidative stress and inflammation, where BACH1 inhibitors share a therapeutic space with activators of transcription factor NRF2. However, while there is a growing number of NRF2 activators, there are only a few described BACH1 inhibitors/degraders. The synthetic acetylenic tricyclic bis(cyanoenone),(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3.4b,7,8,8a,9,10, 10a-octahydrophenanthrene-2,6-dicarbonitrile, TBE31 is a potent activator of NRF2 without any BACH1 activity. Herein we found that biotinylation of TBE31 greatly reduces its potency as NRF2 activator (50-75-fold less active) while acquiring a novel activity as a BACH1 degrader (100-200-fold more active). We demonstrate that TBE56, the biotinylated TBE31, interacts and promotes the degradation of BACH1 via a mechanism involving the E3 ligase FBXO22. TBE56 is a potent and sustained BACH1 degrader (50-fold more potent than hemin) and accordingly a powerful HMOX1 inducer. TBE56 degrades BACH1 in lung and breast cancer cells, impairing breast cancer cell migration and invasion in a BACH1-dependent manner, while TBE31 has no significant effect. Altogether, our study identifies that the biotinylation of TBE31 provides novel activities with potential therapeutic value, providing a rationale for further characterisation of this and related compounds.


Asunto(s)
Neoplasias de la Mama , Proteínas F-Box , Acetileno , Alquinos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Biotinilación , Proteínas F-Box/metabolismo , Femenino , Hemina , Humanos , Inflamación , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell Mol Gastroenterol Hepatol ; 5(3): 367-398, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29552625

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

3.
Eur J Pharmacol ; 793: 21-27, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815170

RESUMEN

The Nuclear factor (erythroid 2-derived)-like 2 (Nrf2) plays a key role in inflammation which is implicated in the pathophysiology of depression. The Nrf2 activators have antidepressant effects in animal models of depression. The present study was undertaken to examine whether TBE-31 [(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile] and MCE-1 [(±)-3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile], the novel Nrf2 activators, could show antidepressant effects in inflammation model of depression. We found that TBE-31 and MCE-1 significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. The Nrf2 siRNA, but not negative control of siRNA, significantly blocked the potentiating effects of TBE-31 and MCE-1 on neurite outgrowth in PC12 cells. Furthermore, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in serum levels of tumor necrosis factor-α (TNF-α) after administration of lipopolysaccharide (LPS: 0.5mg/kg). In the tail-suspension test and forced swimming test, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in the immobility time after LPS (0.5mg/kg) administration. These findings suggest that the novel Nrf2 activators such as TBE-31 and MCE-1 might be potential therapeutic drugs for inflammation-related depression.


Asunto(s)
Antidepresivos/farmacología , Ciclohexanonas/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fenantrenos/farmacología , Animales , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Ciclohexanonas/uso terapéutico , Depresión/patología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Masculino , Factor de Crecimiento Nervioso/farmacología , Proyección Neuronal/efectos de los fármacos , Células PC12 , Fenantrenos/uso terapéutico , Ratas , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda