Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761327

RESUMEN

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Arqueología , Genómica/métodos , Indio Americano o Nativo de Alaska/clasificación , ADN Mitocondrial/genética , Variación Genética , Genoma Humano , Haplotipos , Humanos , Filogenia
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562011

RESUMEN

In this study, we report 21 ancient shotgun genomes from present-day Western Hungary, from previously understudied Late Copper Age Baden, and Bronze Age Somogyvár-Vinkovci, Kisapostag, and Encrusted Pottery archeological cultures (3,530-1,620 cal Bce). Our results indicate the presence of high steppe ancestry in the Somogyvár-Vinkovci culture. They were then replaced by the Kisapostag group, who exhibit an outstandingly high (up to ∼47%) Mesolithic hunter-gatherer ancestry, despite this component being thought to be highly diluted by the time of the Early Bronze Age. The Kisapostag population contributed the genetic basis for the succeeding community of the Encrusted Pottery culture. We also found an elevated hunter-gatherer component in a local Baden culture-associated individual, but no connections were proven to the Bronze Age individuals. The hunter-gatherer ancestry in Kisapostag is likely derived from two main sources, one from a Funnelbeaker or Globular Amphora culture-related population and one from a previously unrecognized source in Eastern Europe. We show that this ancestry not only appeared in various groups in Bronze Age Central Europe but also made contributions to Baltic populations. The social structure of Kisapostag and Encrusted Pottery cultures is patrilocal, similarly to most contemporaneous groups. Furthermore, we developed new methods and method standards for computational analyses of ancient DNA, implemented to our newly developed and freely available bioinformatic package. By analyzing clinical traits, we found carriers of aneuploidy and inheritable genetic diseases. Finally, based on genetic and anthropological data, we present here the first female facial reconstruction from the Bronze Age Carpathian Basin.


Asunto(s)
Genoma Humano , Migración Humana , Humanos , Historia Antigua , Hungría , Europa (Continente) , ADN Antiguo
3.
Proc Natl Acad Sci U S A ; 117(52): 33124-33129, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318213

RESUMEN

Maize (Zea mays ssp. mays) domestication began in southwestern Mexico ∼9,000 calendar years before present (cal. BP) and humans dispersed this important grain to South America by at least 7,000 cal. BP as a partial domesticate. South America served as a secondary improvement center where the domestication syndrome became fixed and new lineages emerged in parallel with similar processes in Mesoamerica. Later, Indigenous cultivators carried a second major wave of maize southward from Mesoamerica, but it has been unclear until now whether the deeply divergent maize lineages underwent any subsequent gene flow between these regions. Here we report ancient maize genomes (2,300-1,900 cal. BP) from El Gigante rock shelter, Honduras, that are closely related to ancient and modern maize from South America. Our findings suggest that the second wave of maize brought into South America hybridized with long-established landraces from the first wave, and that some of the resulting newly admixed lineages were then reintroduced to Central America. Direct radiocarbon dates and cob morphological data from the rock shelter suggest that more productive maize varieties developed between 4,300 and 2,500 cal. BP. We hypothesize that the influx of maize from South America into Central America may have been an important source of genetic diversity as maize was becoming a staple grain in Central and Mesoamerica.


Asunto(s)
Evolución Molecular , Flujo Génico , Fitomejoramiento , Zea mays/genética , América Central , Genoma de Planta , Hibridación Genética , América del Sur
4.
Proc Biol Sci ; 289(1986): 20221078, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36322514

RESUMEN

An increasing body of archaeological and genomic evidence has hinted at a complex settlement process of the Americas by humans. This is especially true for South America, where unexpected ancestral signals have raised perplexing scenarios for the early migrations into different regions of the continent. Here, we present ancient human genomes from the archaeologically rich Northeast Brazil and compare them to ancient and present-day genomic data. We find a distinct relationship between ancient genomes from Northeast Brazil, Lagoa Santa, Uruguay and Panama, representing evidence for ancient migration routes along South America's Atlantic coast. To further add to the existing complexity, we also detect greater Denisovan than Neanderthal ancestry in ancient Uruguay and Panama individuals. Moreover, we find a strong Australasian signal in an ancient genome from Panama. This work sheds light on the deep demographic history of eastern South America and presents a starting point for future fine-scale investigations on the regional level.


Asunto(s)
Migración Humana , Hombre de Neandertal , Humanos , Historia Antigua , Animales , Genómica , Genoma Humano , Brasil
5.
Proc Natl Acad Sci U S A ; 115(13): 3428-3433, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531053

RESUMEN

Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500-3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up.


Asunto(s)
ADN/análisis , Agricultores/historia , Genética de Población , Genoma Humano , Genómica/métodos , Migración Humana/historia , Arqueología , ADN/genética , Europa (Continente) , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos
6.
Proc Natl Acad Sci U S A ; 112(49): 15107-12, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26630007

RESUMEN

The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops' progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval.


Asunto(s)
Adaptación Fisiológica , Cucurbita/fisiología , Ecología , Extinción Biológica , Cucurbita/genética , Genoma de Planta , Datos de Secuencia Molecular , Plastidios/genética
7.
Proc Biol Sci ; 284(1867)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29167366

RESUMEN

The Neolithic transition in west Eurasia occurred in two main steps: the gradual development of sedentism and plant cultivation in the Near East and the subsequent spread of Neolithic cultures into the Aegean and across Europe after 7000 cal BCE. Here, we use published ancient genomes to investigate gene flow events in west Eurasia during the Neolithic transition. We confirm that the Early Neolithic central Anatolians in the ninth millennium BCE were probably descendants of local hunter-gatherers, rather than immigrants from the Levant or Iran. We further study the emergence of post-7000 cal BCE north Aegean Neolithic communities. Although Aegean farmers have frequently been assumed to be colonists originating from either central Anatolia or from the Levant, our findings raise alternative possibilities: north Aegean Neolithic populations may have been the product of multiple westward migrations, including south Anatolian emigrants, or they may have been descendants of local Aegean Mesolithic groups who adopted farming. These scenarios are consistent with the diversity of material cultures among Aegean Neolithic communities and the inheritance of local forager know-how. The demographic and cultural dynamics behind the earliest spread of Neolithic culture in the Aegean could therefore be distinct from the subsequent Neolithization of mainland Europe.


Asunto(s)
Agricultura/historia , Flujo Génico , Genoma Humano , Migración Humana/historia , Arqueología , Agricultores/historia , Genómica , Grecia , Historia Antigua , Humanos , Turquía
8.
Proc Natl Acad Sci U S A ; 111(8): 2937-41, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516122

RESUMEN

Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315-18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication.


Asunto(s)
Agricultura/historia , Cucurbitaceae/genética , Demografía , Migración Humana/historia , Filogenia , Movimientos del Agua , África , Américas , Asia , Secuencia de Bases , Teorema de Bayes , Simulación por Computador , Cucurbitaceae/fisiología , Historia Antigua , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Océanos y Mares , Plastidios/genética , Análisis de Secuencia de ADN
9.
Archaeol Anthropol Sci ; 16(7): 108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948161

RESUMEN

Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.

10.
Curr Biol ; 33(8): 1573-1581.e5, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36931272

RESUMEN

Despite its crucial location, the western side of Amazonia between the Andes and the source(s) of the Amazon River is still understudied from a genomic and archaeogenomic point of view, albeit possibly harboring essential information to clarify the complex genetic history of local Indigenous groups and their interactions with nearby regions,1,2,3,4,5,6,7,8 including central America and the Caribbean.9,10,11,12 Focusing on this key region, we analyzed the genome-wide profiles of 51 Ashaninka individuals from Amazonian Peru, observing an unexpected extent of genomic variation. We identified at least two Ashaninka subgroups with distinctive genomic makeups, which were differentially shaped by the degree and timing of external admixtures, especially with the Indigenous groups from the Andes and the Pacific coast. On a continental scale, Ashaninka ancestors probably derived from a south-north migration of Indigenous groups moving into the Amazonian rainforest from a southeastern area with contributions from the Southern Cone and the Atlantic coast. These ancestral populations diversified in the variegated geographic regions of interior South America, on the eastern side of the Andes, differentially interacting with surrounding coastal groups. In this complex scenario, we also revealed strict connections between the ancestors of present-day Ashaninka, who belong to the Arawakan language family,13 and those Indigenous groups that moved further north into the Caribbean, contributing to the early Ceramic (Saladoid) tradition in the islands.14,15.


Asunto(s)
Etnicidad , Genética de Población , Humanos , Perú , América del Sur , Etnicidad/genética , Genómica
11.
R Soc Open Sci ; 9(6): 220104, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35719876

RESUMEN

Central Asia has been an important region connecting the different parts of Eurasia throughout history and prehistory, with large states developing in this region during the Iron Age. Archaeogenomics is a powerful addition to the zooarchaeological toolkit for understanding the relation of these societies to animals. Here, we present the genetic identification of a goitered gazelle specimen (Gazella subgutturosa) at the site Gazimulla-Tepa, in modern-day Uzbekistan, supporting hunting of the species in the region during the Iron Age. The sample was directly radiocarbon dated to 2724-2439 calBP. A phylogenetic analysis of the mitochondrial genome places the individual into the modern variation of G. subgutturosa. Our data do represent both the first ancient DNA and the first nuclear DNA sequences of this species. The lack of genomic resources available for this gazelle and related species prevented us from performing a more in-depth analysis of the nuclear sequences generated. Therefore, we are making our sequence data available to the research community to facilitate other research of this nowadays threatened species which has been subject to human hunting for several millennia across its entire range on the Asian continent.

12.
Trends Ecol Evol ; 37(3): 268-279, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34863580

RESUMEN

The evidence from ancient crops over the past decade challenges some of our most basic assumptions about the process of domestication. The emergence of crops has been viewed as a technologically progressive process in which single or multiple localized populations adapt to human environments in response to cultivation. By contrast, new genetic and archaeological evidence reveals a slow process that involved large populations over wide areas with unexpectedly sustained cultural connections in deep time. We review evidence that calls for a new landscape framework of crop origins. Evolutionary processes operate across vast distances of landscape and time, and the origins of domesticates are complex. The domestication bottleneck is a redundant concept and the progressive nature of domestication is in doubt.


Asunto(s)
Agricultura , Domesticación , Arqueología , Evolución Biológica , Productos Agrícolas/genética , Humanos
13.
J Anthropol Sci ; 100: 193-230, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36576953

RESUMEN

Ancient DNA (aDNA) studies have deployed genetic material from archaeological contexts to investigate human dispersals and interactions, corroborating some longstanding hypotheses and revealing new aspects of human history. After drawing the broad genomic strokes of human history, geneticists have discovered the exciting possibilities of applying this method to answer questions on a smaller scale. This review provides an overview of the commonly used methods, both in the laboratory and the analyses, and summarizes the current state of genomic research. It reviews human dispersals across the continents and additionally highlights some studies that integrated genomics to answer questions beyond biology to understand the cultural and societal traits of past societies. By shining a light from multiple angles, we gain a much better understanding of the real shape of the human past.


Asunto(s)
Arqueología , Genómica , Humanos , Historia Antigua , ADN Antiguo
14.
Curr Biol ; 31(17): 3925-3934.e8, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34216555

RESUMEN

The history of human inbreeding is controversial.1 In particular, how the development of sedentary and/or agricultural societies may have influenced overall inbreeding levels, relative to those of hunter-gatherer communities, is unclear.2-5 Here, we present an approach for reliable estimation of runs of homozygosity (ROHs) in genomes with ≥3× mean sequence coverage across >1 million SNPs and apply this to 411 ancient Eurasian genomes from the last 15,000 years.5-34 We show that the frequency of inbreeding, as measured by ROHs, has decreased over time. The strongest effect is associated with the Neolithic transition, but the trend has since continued, indicating a population size effect on inbreeding prevalence. We further show that most inbreeding in our historical sample can be attributed to small population size instead of consanguinity. Cases of high consanguinity were rare and only observed among members of farming societies in our sample. Despite the lack of evidence for common consanguinity in our ancient sample, consanguineous traditions are today prevalent in various modern-day Eurasian societies,1,35-37 suggesting that such practices may have become widespread within the last few millennia.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Consanguinidad , Homocigoto , Humanos
15.
mSystems ; 6(6): e0131521, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34931883

RESUMEN

Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.

16.
Annu Rev Plant Biol ; 71: 605-629, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32119793

RESUMEN

The ancient DNA revolution of the past 35 years has driven an explosion in the breadth, nuance, and diversity of questions that are approachable using ancient biomolecules, and plant research has been a constant, indispensable facet of these developments. Using archaeological, paleontological, and herbarium plant tissues, researchers have probed plant domestication and dispersal, plant evolution and ecology, paleoenvironmental composition and dynamics, and other topics across related disciplines. Here, we review the development of the ancient DNA discipline and the role of plant research in its progress and refinement. We summarize our understanding of long-term plant DNA preservation and the characteristics of degraded DNA. In addition, we discuss challenges in ancient DNA recovery and analysis and the laboratory and bioinformatic strategies used to mitigate them. Finally, we review recent applications of ancient plant genomic research.


Asunto(s)
Arqueología , ADN Antiguo , Ambiente , Genómica , Plantas/genética
17.
Evol Appl ; 12(1): 29-37, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30622633

RESUMEN

Domesticated crops show a reduced level of diversity that is commonly attributed to the "domestication bottleneck"; a drastic reduction in the population size associated with subsampling the wild progenitor species and the imposition of selection pressures associated with the domestication syndrome. A prediction of the domestication bottleneck is a sharp decline in genetic diversity early in the domestication process. Surprisingly, archaeological genomes of three major annual crops do not indicate that such a drop in diversity occurred early in the domestication process. In light of this observation, we revisit the general assumption of the domestication bottleneck concept in our current understanding of the evolutionary process of domestication.

18.
Methods Mol Biol ; 1963: 45-55, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30875043

RESUMEN

Ancient plant remains from archaeological sites, paleoenvironmental contexts, and herbaria provide excellent opportunities for interrogating plant genetics over Quaternary timescales using ancient DNA (aDNA)-based analyses. A variety of plant tissues, preserved primarily by desiccation and anaerobic waterlogging, have proven to be viable sources of aDNA. Plant tissues are anatomically and chemically diverse and therefore require optimized DNA extraction approaches. Here, we describe a plant DNA isolation protocol that performs well in most contexts. We include recommendations for optimization to retain the very short DNA fragments that are expected to be preserved in degraded tissues.


Asunto(s)
ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , ADN de Plantas/análisis , ADN de Plantas/aislamiento & purificación , Plantas/genética , Manejo de Especímenes/métodos , Plantas/clasificación
19.
Curr Biol ; 27(21): 3396-3402.e5, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107554

RESUMEN

The origins and genetic affinity of the aboriginal inhabitants of the Canary Islands, commonly known as Guanches, are poorly understood. Though radiocarbon dates on archaeological remains such as charcoal, seeds, and domestic animal bones suggest that people have inhabited the islands since the 5th century BCE [1-3], it remains unclear how many times, and by whom, the islands were first settled [4, 5]. Previously published ancient DNA analyses of uniparental genetic markers have shown that the Guanches carried common North African Y chromosome markers (E-M81, E-M78, and J-M267) and mitochondrial lineages such as U6b, in addition to common Eurasian haplogroups [6-8]. These results are in agreement with some linguistic, archaeological, and anthropological data indicating an origin from a North African Berber-like population [1, 4, 9]. However, to date there are no published Guanche autosomal genomes to help elucidate and directly test this hypothesis. To resolve this, we generated the first genome-wide sequence data and mitochondrial genomes from eleven archaeological Guanche individuals originating from Gran Canaria and Tenerife. Five of the individuals (directly radiocarbon dated to a time transect spanning the 7th-11th centuries CE) yielded sufficient autosomal genome coverage (0.21× to 3.93×) for population genomic analysis. Our results show that the Guanches were genetically similar over time and that they display the greatest genetic affinity to extant Northwest Africans, strongly supporting the hypothesis of a Berber-like origin. We also estimate that the Guanches have contributed 16%-31% autosomal ancestry to modern Canary Islanders, here represented by two individuals from Gran Canaria.


Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/genética , Emigración e Inmigración/estadística & datos numéricos , Genoma Humano/genética , Genoma Mitocondrial/genética , Grupos Raciales/genética , África del Norte , Arqueología/métodos , Restos Mortales , Marcadores Genéticos , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple/genética , España , Diente/anatomía & histología
20.
Curr Biol ; 26(19): 2659-2666, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498567

RESUMEN

The archaeological documentation of the development of sedentary farming societies in Anatolia is not yet mirrored by a genetic understanding of the human populations involved, in contrast to the spread of farming in Europe [1-3]. Sedentary farming communities emerged in parts of the Fertile Crescent during the tenth millennium and early ninth millennium calibrated (cal) BC and had appeared in central Anatolia by 8300 cal BC [4]. Farming spread into west Anatolia by the early seventh millennium cal BC and quasi-synchronously into Europe, although the timing and process of this movement remain unclear. Using genome sequence data that we generated from nine central Anatolian Neolithic individuals, we studied the transition period from early Aceramic (Pre-Pottery) to the later Pottery Neolithic, when farming expanded west of the Fertile Crescent. We find that genetic diversity in the earliest farmers was conspicuously low, on a par with European foraging groups. With the advent of the Pottery Neolithic, genetic variation within societies reached levels later found in early European farmers. Our results confirm that the earliest Neolithic central Anatolians belonged to the same gene pool as the first Neolithic migrants spreading into Europe. Further, genetic affinities between later Anatolian farmers and fourth to third millennium BC Chalcolithic south Europeans suggest an additional wave of Anatolian migrants, after the initial Neolithic spread but before the Yamnaya-related migrations. We propose that the earliest farming societies demographically resembled foragers and that only after regional gene flow and rising heterogeneity did the farming population expansions into Europe occur.


Asunto(s)
Agricultura , Arqueología , Agricultores , Variación Genética , Humanos , Turquía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda