Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
BMC Genomics ; 25(1): 759, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097683

RESUMEN

BACKGROUND: Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS: In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS: Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.


Asunto(s)
Chrysanthemum , Flavonas , Ácido Quínico , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonas/metabolismo , Ácido Quínico/metabolismo , Ácido Quínico/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica , Transcriptoma
2.
Chem Pharm Bull (Tokyo) ; 72(1): 93-97, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38233137

RESUMEN

Sunflower seed extract, an antioxidant agent registered on the List of Existing Food Additives in Japan, was evaluated using HPLC, and three common constituents were detected. These peaks were identified as monocaffeoylquinic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and 5-O-caffeoylquinic acid [chlorogenic acid]). Upon scrutinizing other components, dicaffeoylquinic acids (isochlorogenic acids; 3,4-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 4,5-di-O-caffeoylquinic acids) were also identified. Structures of two newly isolated compounds were determined to be 3-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic and 4-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic acids. To identify the components that contribute to the antioxidant activity of sunflower seed extract, we fractionated the food additive sample solution and examined the active fractions for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Monocaffeoylquinic and dicaffeoylquinic acids showed high DPPH activity, including their contribution to the antioxidant activity of this food additive. DPPH radical scavenging activity of the new compounds showed almost the same value as that of the positive control, Trolox. Therefore, the contribution of these compounds was also considered.


Asunto(s)
Antioxidantes , Ácido Clorogénico/análogos & derivados , Helianthus , Ácido Quínico/análogos & derivados , Antioxidantes/farmacología , Antioxidantes/química , Aditivos Alimentarios/análisis , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Indoles
3.
Molecules ; 29(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38731636

RESUMEN

Plant in vitro cultures can be an effective tool in obtaining desired specialized metabolites. The purpose of this study was to evaluate the effect of light-emitting diodes (LEDs) on phenolic compounds in Rhaponticum carthamoides shoots cultured in vitro. R. carthamoides is an endemic and medicinal plant at risk of extinction due to the massive harvesting of its roots and rhizomes from the natural environment. The shoots were cultured on an agar-solidified and liquid-agitated Murashige and Skoog's medium supplemented with 0.1 mg/L of indole-3-acetic acid (IAA) and 0.5 mg/L of 6-benzyladenine (BA). The effect of the medium and different treatments of LED lights (blue (BL), red (RL), white (WL), and a combination of red and blue (R:BL; 7:3)) on R. carthamoides shoot growth and its biosynthetic potential was observed. Medium type and the duration of LED light exposure did not affect the proliferation rate of shoots, but they altered the shoot morphology and specialized metabolite accumulation. The liquid medium and BL light were the most beneficial for the caffeoylquinic acid derivatives (CQAs) production, shoot growth, and biomass increment. The liquid medium and BL light enhanced the content of the sum of all identified CQAs (6 mg/g DW) about three-fold compared to WL light and control, fluorescent lamps. HPLC-UV analysis confirmed that chlorogenic acid (5-CQA) was the primary compound in shoot extracts regardless of the type of culture and the light conditions (1.19-3.25 mg/g DW), with the highest level under R:BL light. BL and RL lights were equally effective. The abundant component was also 3,5-di-O-caffeoylquinic acid, accompanied by 4,5-di-O-caffeoylquinic acid, a tentatively identified dicaffeoylquinic acid derivative, and a tricaffeoylquinic acid derivative 2, the contents of which depended on the LED light conditions.


Asunto(s)
Flavonoides , Luz , Brotes de la Planta , Ácido Quínico , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/química , Flavonoides/metabolismo , Flavonoides/química , Ácidos Indolacéticos/metabolismo
4.
Molecules ; 29(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611933

RESUMEN

Few sclerophyllous plants from the central coast of Chile have been systematically studied. This work describes the phytochemical composition and antimicrobial properties of Baccharis concava Pers. (sin. B. macraei), a shrub found in the first line and near the Pacific coast. B. concava has been traditionally used by indigenous inhabitants of today's central Chile for its medicinal properties. Few reports exist regarding the phytochemistry characterization and biological activities of B. concava. A hydroalcoholic extract of B. concava was prepared from leaves and small branches. Qualitative phytochemical characterization indicated the presence of alkaloids, steroids, terpenoids, flavonoids, phenolic, and tannin compounds. The antimicrobial activity of this extract was assessed in a panel of microorganisms including Gram-positive bacteria, Gram-negative bacteria, and pathogenic yeasts. The extract displayed an important antimicrobial effect against Gram-positive bacteria, Candida albicans, and Cryptococcus neoformans but not against Gram-negatives, for which an intact Lipopolysaccharide is apparently the determinant of resistance to B. concava extracts. The hydroalcoholic extract was then fractionated through a Sephadex LH-20/methanol-ethyl acetate column. Afterward, the fractions were pooled according to a similar pattern visualized by TLC/UV analysis. Fractions obtained by this criterion were assessed for their antimicrobial activity against Staphylococcus aureus. The fraction presenting the most antimicrobial activity was HPLC-ESI-MS/MS, obtaining molecules related to caffeoylquinic acid, dicaffeoylquinic acid, and quercetin, among others. In conclusion, the extracts of B. concava showed strong antimicrobial activity, probably due to the presence of metabolites derived from phenolic acids, such as caffeoylquinic acid, and flavonoids, such as quercetin, which in turn could be responsible for helping with wound healing. In addition, the development of antimicrobial therapies based on the molecules found in B. concava could help to combat infection caused by pathogenic yeasts and Gram-positive bacteria, without affecting the Gram-negative microbiota.


Asunto(s)
Baccharis , Quercetina , Ácido Quínico/análogos & derivados , Chile , Espectrometría de Masas en Tándem , Fitoquímicos/farmacología , Flavonoides/farmacología , Extractos Vegetales/farmacología
5.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108084

RESUMEN

Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.


Asunto(s)
Antioxidantes , Rhizobium , Humanos , Plantas Modificadas Genéticamente/genética , Antioxidantes/metabolismo , Agrobacterium/genética , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Transformación Genética , Rhizobium/genética
6.
Molecules ; 28(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687095

RESUMEN

Total polyphenol and total flavonoid assays were performed to characterize the relationships between the color of Peucedanum japonicum (PJ) seed coat and stem and the content of phytochemical compounds. The samples were divided into two groups based on their stem and seed coat color, with each group containing 23 samples. The stem color group was subdivided into green, light red, and red, whereas the seed coat color group was divided into light brown, brown, and dark brown. In the stem color group, the light red stems exhibited the highest content of phytochemical compounds, with levels over 10% higher than those of the stems of the other colors. Moreover, among the top ten samples with the highest total polyphenol content, eight samples were light red, and the light red group also exhibited the highest total flavonoid content among the examined color groups. In terms of the seed coat color, the plants grown from dark brown seeds exhibited the highest contents of both total polyphenols and total flavonoids. In conclusion, PJ plants with dark brown seeds and light red stems contained the highest levels of phytochemical compounds. Collectively, our findings provide a valuable basis for future seed selection of PJ for pharmaceutical purposes.


Asunto(s)
Apiaceae , Fenoles , Color , Flavonoides , Polifenoles , Semillas
7.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513230

RESUMEN

The formation of water-insoluble complexes between chitosan (ChS) and caffeoylquinic acid (CQ) derivatives present in artichoke (AE) and green coffee bean (GCBE) extracts was investigated by the equilibrium adsorption method. The UPLC/HPLC analysis revealed that the phenolic compounds accounted for 8.1% and 74.6% of AE and GCBE respectively, and CQ derivatives were the predominant compounds. According to the applied Langmuir adsorption model, anionic compounds present in natural extracts were adsorbed onto the active centers of ChS, i.e., primary amino groups. The driving forces of adsorption were electrostatic interactions between cationic groups of ChS and anionic compounds of natural extracts. Chromatographic analysis revealed that not only CQ derivatives, but also other phenolic compounds of natural extracts were attached to ChS. The release of adsorbed compounds into different media as well as the bioactive properties of complexes were also studied. With the immobilization of bioactives onto ChS, increased and prolonged ABTS•+ radical scavenging activity and decreased antifungal activity against Fusarium graminearum and Botrytis cinerea were observed compared to those of ChS. The findings of the current study highlight that the adsorption approach could be used to successfully prepare water-insoluble complexes of ChS and components of natural extracts with prolonged antioxidant activity.


Asunto(s)
Quitosano , Coffea , Cynara scolymus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Coffea/química , Cynara scolymus/química , Antioxidantes/química , Fenoles/análisis , Agua
8.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513412

RESUMEN

Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.


Asunto(s)
Ácido Clorogénico , Café , Humanos , Antioxidantes , Ácido Quínico/análisis , Medición de Riesgo
9.
Pharmacol Res ; 184: 106424, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36064077

RESUMEN

The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1ß, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lesión Pulmonar , Embolia Pulmonar , Enzima Convertidora de Angiotensina 2 , Quimiocina CCL5 , Citocinas , Fibrosis , Humanos , Interleucina-6/metabolismo , Interleucina-8 , Lesión Pulmonar/tratamiento farmacológico , Pandemias , Fosfatidilinositol 3-Quinasas , Inhibidor 1 de Activador Plasminogénico , Proteínas Proto-Oncogénicas c-akt , Embolia Pulmonar/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de von Willebrand
10.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430325

RESUMEN

Rhaponticum carthamoides (Willd.) Iljin is a rare, pharmacopoeial, and medicinal plant, endemic to Siberia and endangered due to the massive collection of raw material from the natural habitat. The aim of the current study was to estimate the effect of sucrose concentration (0-7%) on R. carthamoides transformed root growth and on caffeoylquinic acid derivative (CQA) and flavonoid production. Sucrose in higher concentrations may induce osmotic stress and thus may affect secondary metabolism in plants. It was revealed that sucrose concentration influenced R. carthamoides transformed root biomass and modified the phenolic compound metabolic pathway. However, the dynamics of both processes varied significantly. The optimal sucrose level was different for biomass accumulation and the biosynthesis of specialized metabolite. The highest dry weight of roots was achieved for 7% sucrose (31.17 g L-1 of dry weight), while 1% sucrose was found to be optimal for phenolic acid and flavonoid production. Considering the dry weight increase and metabolite accumulation, 3% sucrose was revealed to give optimal yields of CQAs (511.1 mg L-1) and flavonoids (38.9 mg L-1). Chlorogenic acid, 3,5-, 4,5-di-O-caffeoylquinic acids, 1,4,5-O-tricaffeoylquinic acid, and a tentatively-identified tricaffeoylquinic acid derivative 1 were found to be the most abundant specialized metabolites among the identified CQAs. Our findings indicate that R. carthamoides transformed roots may be an efficient source of CQA derivatives, with valuable health-promoting activities.


Asunto(s)
Leuzea , Biomasa , Sacarosa , Flavonoides , Peso Corporal
11.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499441

RESUMEN

Sugarcane (Saccharum officinarum L.) is a tropical plant grown for sugar production. We recently showed that sugarcane top (ST) ameliorates cognitive decline in a mouse model of accelerated aging via promoting neuronal differentiation and neuronal energy metabolism and extending the length of the astrocytic process in vitro. Since the crude extract consists of multicomponent mixtures, it is crucial to identify bioactive compounds of interest and the affected molecular targets. In the present study, we investigated the bioactivities of major polyphenols of ST, namely 3-O-caffeoylquinic acid (3CQA), 5-O-caffeoylquinic acid (5CQA), 3-O-feruloylquinic acid (3FQA), and Isoorientin (ISO), in human fetal neural stem cells (hNSCs)- an in vitro model system for studying neural development. We found that multiple polyphenols of ST contributed synergistically to stimulate neuronal differentiation of hNSCs and induce mitochondrial activity in immature astrocytes. Mono-CQAs (3CQA and 5CQA) regulated the expression of cyclins related to G1 cell cycle arrest, whereas ISO regulated basic helix-loop-helix transcription factors related to cell fate determination. Additionally, mono-CQAs activated p38 and ISO inactivated GSK3ß. In hNSC-derived immature astrocytes, the compounds upregulated mRNA expression of PGC-1α, a master regulator of astrocytic mitochondrial biogenesis. Altogether, our findings suggest that synergistic interactions between major polyphenols of ST contribute to its potential for neuronal differentiation and astrocytic maturation.


Asunto(s)
Células-Madre Neurales , Saccharum , Ratones , Animales , Humanos , Saccharum/genética , Polifenoles/farmacología , Polifenoles/metabolismo , Diferenciación Celular , Neurogénesis
12.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364475

RESUMEN

Domesticated international (standard) apple cultivars, together with resistant apple cultivars are the core of the Serbian apple production. Furthermore, autochthonous cultivars are characterized by a good adaptability to the local environmental conditions and represent a valuable source of genetic variability, as well as an important source of the gene pool for further breeding programs. Additionally, they show a higher phenolic content and a stronger antioxidant activity, in comparison to commercial cultivars. Therefore, they are more likely to be used as a functional food. The subjects of this study were seventeen samples of fruits and leaves from autochthonous apple cultivars, five international standard cultivars, and six resistant apple cultivars. The phenolic profile was determined using ultra-high performance liquid chromatography (UHPLC), coupled with a diode array detector and a TSQ Quantum Access Max triple-quadrupole mass spectrometer. A total of twenty compounds were quantified in the samples. Most of the analyzed phenolics were detected in higher amounts in the peel, compared to the mesocarp. The results of the multivariate analysis of variance (MANOVA) indicate that 5-O-caffeoylquinic acid is present in the highest amount in the mesocarp, while in the peel and leaves, quercetin-glycosides were detected in the highest amount. According to the MANOVA: phloretin, phlorizin, 5-O-caffeoylquinic acid, kaempferol, and p-coumaric acid are present in significantly higher levels in the autochthonous cultivars, compared to the standard and resistant ones (in both fruits and leaves). Therefore, these compounds can be used as chemical tracers of the apple varietal origin.


Asunto(s)
Malus , Humanos , Malus/química , Serbia , Fitomejoramiento , Fenoles/química , Frutas/química , Cromatografía Líquida de Alta Presión , Fitoquímicos/análisis
13.
Plant Mol Biol ; 107(3): 177-206, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34677706

RESUMEN

Tomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.


Asunto(s)
Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , Estrés Fisiológico , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Luz , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Metabolismo Secundario , Temperatura
14.
Cell Commun Signal ; 19(1): 26, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627134

RESUMEN

Over the past years, Human Amnion Epithelial Cells (hAECs), a placental stem cell, are gaining higher attention from the scientific community as they showed several advantages over other types of stem cells, including availability, easy accessibility, reduced rejection rate, non-tumorigenicity, and minimal legal constraint. Recently, natural compounds are used to stimulate stem cell differentiation and proliferation and to enhance their disease-treating potential. A polyphenolic compound 3,4,5-Tri-O-Caffeoylquinic Acid (TCQA) has been previously reported to induce human neural stem cell differentiation and may affect melanocyte stem cell differentiation as well. In this study, TCQA was tested on 3D cultured hAECs after seven days of treatment, and then, microarray gene expression profiling was conducted of TCQA-treated and untreated control cells on day 0 and day 7. Analyses revealed that TCQA treatment significantly enriched pigment and neural cells sets; besides, genes linked with neurogenesis, oxidation-reduction process, epidermal development, and metabolism were positively regulated. Interestingly, TCQA stimulated cell cycle arrest-related pathways and differentiation signaling. On the other hand, TCQA decreased interleukins and cytokines expression and this due to its anti-inflammatory properties as a polyphenolic compound. Results were validated to highlight the main activities of TCQA on hAECs, including differentiation, cell cycle arrest, and anti-inflammatory. This study highlights the important role of hAECs in regenerative medicine and the use of natural compounds to regulate their fate. Video abstract.


Asunto(s)
Amnios/citología , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Ácido Quínico/análogos & derivados , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Neuronas/efectos de los fármacos , Pigmentación , Ácido Quínico/farmacología , Transcriptoma/efectos de los fármacos
15.
Chem Biodivers ; 18(10): e2100356, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34398524

RESUMEN

The aim of the present study was to quantify selected phenolic compounds, determine antioxidant activity and enzyme inhibitory effects of the aerial parts of Alkanna trichophylla Hub.-Mor. (A. trichophylla) and Convolvulus galaticus Rost.ex Choisy (C. galaticus) extracts prepared by homogenizer-assisted extraction (HAE), maceration (MAC) and infusion techniques. This is the first time such study has been designed to validate the phytochemical composition and bioactivity of these plants. Multivariate analysis was conducted on collected data. Rutin and caffeoylquinic acid derivatives were the most significant compounds in A. trichophylla and C. galaticus, respectively. The highest antioxidant activity of A. trichophylla was mostly exhibited by HAE/methanolic extracts as determined by DPPH, ABTS, FRAP (51.39, 112.70 and 145.73 mg TE/g, respectively) and phosphomolybdenum (2.05 mmol TE/g) assays. However, significant antioxidant activities varied within the extracts of C. galaticus. HAE/methanolic extract of A. trichophylla significantly depressed AChE (2.70 mg GALAE/g), BChE (5.53 mg GALAE/g) and tyrosinase (26.34 mg KAE/g) activities and that of C. galaticus inhibited AChE (2.04 mg GALAE/g), tyrosinase (31.25 mg KAE/g) and α-amylase (0.53 mmol ACAE/g) activities significantly. We concluded that HAE was the most efficient extraction technique as high yield of compounds and promising bioactivities were recorded from extracts prepared. Multivariate analysis showed that types of solvents influenced recovery of compounds and biological activities. This research study can be used as one methodological starting point for further investigation on these plants as all results are clearly promising and open the door to further research challenges such as cytotoxicity evaluation, molecular docking analysis, and more screening of pharmacological actions.


Asunto(s)
Antioxidantes/farmacología , Boraginaceae/química , Convolvulus/química , Inhibidores Enzimáticos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Acetilcolinesterasa/metabolismo , Agaricales/enzimología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Butirilcolinesterasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Ácidos Sulfónicos/antagonistas & inhibidores , Turquía , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
16.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199260

RESUMEN

The phenylpropanoid pathway is a major secondary metabolite pathway that helps plants overcome biotic and abiotic stress and produces various byproducts that promote human health. Its byproduct caffeoylquinic acid is a soluble phenolic compound present in many angiosperms. Hydroxycinnamate-CoA shikimate/quinate transferase is a significant enzyme that plays a role in accumulating CQA biosynthesis. This study analyzed transcriptome-wide identification of the phenylpropanoid to caffeoylquinic acid biosynthesis candidate genes in A. spathulifolius flowers and leaves. Transcriptomic analyses of the flowers and leaves showed a differential expression of the PPP and CQA biosynthesis regulated unigenes. An analysis of PPP-captive unigenes revealed a major duplication in the following genes: PAL, 120 unigenes in leaves and 76 in flowers; C3'H, 169 unigenes in leaves and 140 in flowers; 4CL, 41 unigenes in leaves and 27 in flowers; and C4H, 12 unigenes in leaves and 4 in flowers. The phylogenetic analysis revealed 82 BAHDs superfamily members in leaves and 72 in flowers, among which five unigenes encode for HQT and three for HCT. The three HQT are common to both leaves and flowers, whereas the two HQT were specialized for leaves. The pattern of HQT synthesis was upregulated in flowers, whereas HCT was expressed strongly in the leaves of A. spathulifolius. Overall, 4CL, C4H, and HQT are expressed strongly in flowers and CAA and HCT show more expression in leaves. As a result, the quantification of HQT and HCT indicates that CQA biosynthesis is more abundant in the flowers and synthesis of caffeic acid in the leaves of A. spathulifolius.


Asunto(s)
Aciltransferasas/genética , Asteraceae/enzimología , Asteraceae/genética , Vías Biosintéticas , Ácido Quínico/análogos & derivados , Transcriptoma/genética , Vías Biosintéticas/genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Propanoles/metabolismo , Ácido Quínico/metabolismo
17.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946775

RESUMEN

Bioactive compounds in fruit and vegetables influence each other's antioxidant activity. Pure standards, and mixtures of the common plant compounds, namely ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside (sum 0.3 mM), in the presence and absence of iron, were analyzed pre- and post-thermal processing in an aqueous solution. Antioxidant activity was measured by total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (TEAC) radical-scavenging assays. Ionic ferrous iron (Fe2+) and ferric iron (Fe3+) were measured photometrically. For qualification and quantification of reaction products, HPLC was used. Results showed that thermal processing does not necessarily lead to a decreased antioxidant activity, even if the compound concentrations decreased, as then degradation products themselves have an antioxidant activity. In all used antioxidant assays the 2:1 ratio of ascorbic acid and 5-caffeoylquinic acid in the presence of iron had strong synergistic effects, while the 1:2 ratio had strong antagonistic effects. The pro-oxidant iron positively influenced the antioxidant activity in combination with the used antioxidants, while ferrous iron itself interacted with common in vitro assays for total antioxidant activity. These results indicate that the antioxidant activity of compounds is influenced by factors such as interaction with other molecules, temperature, and the minerals present.


Asunto(s)
Antioxidantes/química , Ácido Ascórbico/química , Calor , Hierro/química , Ácido Quínico/análogos & derivados , Rutina/química , Ácido Quínico/química
18.
J Food Sci Technol ; 58(12): 4514-4523, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629515

RESUMEN

In this research, a supercritical CO2-ethanol extraction was optimized to obtain a green coffee oil rich in bioactive compounds. A face-centered central composite design was used to evaluate the effect of temperature (50-70 °C), extraction pressure (15.0-30.0 MPa), and cosolvent content (5-20%) on the extraction yield and total phenolic compound content of green coffee supercritical extract (GCSE). The experimental data were fitted to a second-order polynomial model. According to the statistical analyses, the lack of fit was not significant for either mathematical model. From the response surface plots, the extraction pressure and cosolvent content significantly impacted the extraction yield, while the total phenolic compound content was impacted by temperature and cosolvent content. The optimal conditions were a 20% cosolvent content, a pressure of 30 MPa, and a temperature of 62 °C, which predicted an extraction yield of 7.7% with a total phenol content of 5.4 mg gallic acid equivalent g GCSE-1. The bioactive compounds included 5-caffeoylquinic acid (11.53-17.91 mg g GCSE-1), caffeine (44.76-79.51 mg g GCSE-1), linoleic acid (41.47-41.58%), and palmitic acid (36.07-36.18%). Our results showed that GCSE has the outstanding chemical quality and antioxidant potential, suggesting that GCSE can be used as a functional ingredient.

19.
Biosci Biotechnol Biochem ; 84(3): 621-632, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31762379

RESUMEN

The antioxidant activity of Petasites japonicus flower buds cultivated in Tokushima, Japan, was examined in vitro and in vivo. The flower bud extracts were assayed using either oxygen radical absorbance capacity or 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Antioxidants in the 80% ethanol extract were investigated using online high-performance liquid chromatography-DPPH and were identified as caffeic acid, 3-O-caffeoylquinic acid, fukinolic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid using liquid chromatography-mass spectrometry. Fukinolic acid was the most active compound based on its activity and abundance. Administering the extracts orally to ICR mice prior to iron injection significantly suppressed plasma thiobarbituric acid reactive substance (TBARS) production. Moreover, TBARS and triglyceride concentrations in the plasma of C57BL/6 mice fed with a high fat diet were also significantly decreased by the extract. The results suggest that antioxidative compounds in P. japonicus can be used in the management of oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Flores/química , Petasites/química , Extractos Vegetales/farmacología , Animales , Cromatografía Líquida de Alta Presión/métodos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Espectrometría de Masas en Tándem , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Drug Dev Res ; 81(5): 609-619, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32220026

RESUMEN

Scutellarin is the major and active constituent of Dengzhan Xixin Injection (DZXX), a traditional Chinese medicine prepared from the aqueous extract of Erigeron breviscapus and widely used for the treatment of various cerebrovascular diseases in clinic. In present study, the possible pharmacokinetic differences of scutellarin after intravenous administration of scutellarin alone or DZXX were explored. Additional, the potential roles of ß-glucuronidase (GLU) and OATP2B1 in drug-drug interaction (DDI) between scutellarin and constituents of DZXX were further evaluated in vitro. The plasma concentration, urinary and biliary excretion of scutellarin in rats after administration of DZXX, were significantly higher than those received scutellarin, while pharmacokinetic profile of Apigenin 7-O-glucuronide (AG) in rats was similar no matter AG or DZXX group. Furthermore, higher concentration in brain and plasma, however, lower level of scutellarin in intestine were observed after intravenous administration of DZXX. Finally, AG and caffeoylquinic acid esters were found to significantly inhibit GLU and OATP2B1 in vitro, which might explain, at least in part, the pharmacokinetic DDI between scutellarin and other chemical constituents in DZXX. The findings provided deep insight into the prescription-formulating principle in DZXX for treating the cerebrovascular diseases.


Asunto(s)
Apigenina/farmacocinética , Erigeron , Glucuronatos/farmacocinética , Glucuronidasa/metabolismo , Transportadores de Anión Orgánico/metabolismo , Extractos Vegetales/farmacocinética , Animales , Apigenina/sangre , Apigenina/orina , Bilis/química , Composición de Medicamentos , Interacciones Farmacológicas , Endocitosis , Glucuronatos/sangre , Glucuronatos/orina , Glucuronidasa/antagonistas & inhibidores , Células HEK293 , Humanos , Hidrólisis , Inyecciones Intravenosas , Masculino , Transportadores de Anión Orgánico/antagonistas & inhibidores , Ratas Sprague-Dawley , Distribución Tisular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda