Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.437
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(15): 2657-2677, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35809571

RESUMEN

Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.


Asunto(s)
Carbohidratos , Polisacáridos , Animales , Mamíferos , Polisacáridos/química
2.
Trends Immunol ; 44(10): 845-857, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37684173

RESUMEN

Adjuvants are essential components of modern vaccines. One general mechanism underlying their immunostimulatory functions is the activation of pattern recognition receptors (PRRs) of innate immune cells. Carbohydrates - as essential signaling molecules on microbial surfaces - are potent PRR agonists and candidate materials for adjuvant design. Here, we summarize the latest trends in developing carbohydrate-containing adjuvants, with fresh opinions on how the physicochemical characteristics of the glycans (e.g., molecular size, assembly status, monosaccharide components, and functional group patterns) affect their adjuvant activities in aiding antigen transport, regulating antigen processing, and enhancing adaptive immune responses. From a translational perspective, we also discuss potential technologies for solving long-lasting challenges in carbohydrate adjuvant design.


Asunto(s)
Inmunidad Adaptativa , Vacunas , Humanos , Receptores de Reconocimiento de Patrones , Adyuvantes Inmunológicos , Desarrollo de Vacunas , Carbohidratos , Inmunidad Innata
3.
Semin Cell Dev Biol ; 138: 104-116, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35393234

RESUMEN

Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.


Asunto(s)
Drosophila melanogaster , Glucógeno , Animales , Humanos , Adulto , Drosophila melanogaster/metabolismo , Glucógeno/metabolismo , Proteómica , Lipólisis , Drosophila/metabolismo , Triglicéridos/metabolismo
4.
Mass Spectrom Rev ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925550

RESUMEN

The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.

5.
Mass Spectrom Rev ; 43(2): 369-408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36727592

RESUMEN

Biomass-derived degraded lignin and cellulose serve as possible alternatives to fossil fuels for energy and chemical resources. Fast pyrolysis of lignocellulosic biomass generates bio-oil that needs further refinement. However, as pyrolysis causes massive degradation to lignin and cellulose, this process produces very complex mixtures. The same applies to degradation methods other than fast pyrolysis. The ability to identify the degradation products of lignocellulosic biomass is of great importance to be able to optimize methodologies for the conversion of these mixtures to transportation fuels and valuable chemicals. Studies utilizing tandem mass spectrometry have provided invaluable, molecular-level information regarding the identities of compounds in degraded biomass. This review focuses on the molecular-level characterization of fast pyrolysis and other degradation products of lignin and cellulose via tandem mass spectrometry based on collision-activated dissociation (CAD). Many studies discussed here used model compounds to better understand both the ionization chemistry of the degradation products of lignin and cellulose and their ions' CAD reactions in mass spectrometers to develop methods for the structural characterization of the degradation products of lignocellulosic biomass. Further, model compound studies were also carried out to delineate the mechanisms of the fast pyrolysis reactions of lignocellulosic biomass. The above knowledge was used to assign likely structures to many degradation products of lignocellulosic biomass.


Asunto(s)
Lignina , Espectrometría de Masas en Tándem , Lignina/química , Espectrometría de Masas en Tándem/métodos , Biomasa , Celulosa
6.
Mol Cell Proteomics ; 22(9): 100635, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597722

RESUMEN

Breast milk is abundant with functionalized milk oligosaccharides (MOs) to nourish and protect the neonate. Yet we lack a comprehensive understanding of the repertoire and evolution of MOs across Mammalia. We report ∼400 MO-species associations (>100 novel structures) from milk glycomics of nine mostly understudied species: alpaca, beluga whale, black rhinoceros, bottlenose dolphin, impala, L'Hoest's monkey, pygmy hippopotamus, domestic sheep, and striped dolphin. This revealed the hitherto unknown existence of the LacdiNAc motif (GalNAcß1-4GlcNAc) in MOs of all species except alpaca, sheep, and striped dolphin, indicating the widespread occurrence of this potentially antimicrobial motif in MOs. We also characterize glucuronic acid-containing MOs in the milk of impala, dolphins, sheep, and rhinoceros, previously only reported in cows. We demonstrate that these GlcA-MOs exhibit potent immunomodulatory effects. Our study extends the number of known MOs by >15%. Combined with >1900 curated MO-species associations, we characterize MO motif distributions, presenting an exhaustive overview of MO biodiversity.


Asunto(s)
Antílopes , Camélidos del Nuevo Mundo , Delfines , Stenella , Humanos , Femenino , Recién Nacido , Animales , Bovinos , Ovinos , Leche Humana , Oligosacáridos
7.
Diabetologia ; 67(3): 506-515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052941

RESUMEN

AIMS/HYPOTHESIS: A type 2 diabetes-risk-increasing variant, MTNR1B (melatonin receptor 1B) rs10830963, regulates the circadian function and may influence the variability in metabolic responses to dietary carbohydrates. We investigated whether the effects of carbohydrate quantity and dietary glycaemic index (GI) on glycaemic response during OGTTs varied by the risk G allele of MTNR1B-rs10830963. METHODS: This study included participants (n=150) of a randomised crossover-controlled feeding trial of four diets with high/low GI levels and high/low carbohydrate content for 5 weeks. The MTNR1B-rs10830963 (C/G) variant was genotyped. Glucose response during 2 h OGTT was measured at baseline and the end of each diet intervention. RESULTS: Among the four study diets, carrying the risk G allele (CG/GG vs CC genotype) of MTNR1B-rs10830963 was associated with the largest AUC of glucose during 2 h OGTT after consuming a high-carbohydrate/high-GI diet (ß 134.32 [SE 45.69] mmol/l × min; p=0.004). The risk G-allele carriers showed greater increment of glucose during 0-60 min (ß 1.26 [0.47] mmol/l; p=0.008) or 0-90 min (ß 1.10 [0.50] mmol/l; p=0.028) after the high-carbohydrate/high-GI diet intervention, but not after consuming the other three diets. At high carbohydrate content, reducing GI levels decreased 60 min post-OGTT glucose (mean -0.67 [95% CI: -1.18, -0.17] mmol/l) and the increment of glucose during 0-60 min (mean -1.00 [95% CI: -1.67, -0.33] mmol/l) and 0-90 min, particularly in the risk G-allele carriers (pinteraction <0.05 for all). CONCLUSIONS/INTERPRETATION: Our study shows that carrying the risk G allele of MTNR1B-rs10830963 is associated with greater glycaemic responses after consuming a diet with high carbohydrates and high GI levels. Reducing GI in a high-carbohydrate diet may decrease post-OGTT glucose concentrations among the risk G-allele carriers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Índice Glucémico , Humanos , Glucosa , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Genotipo , Receptor de Melatonina MT2/genética , Carbohidratos de la Dieta
8.
Diabetologia ; 67(2): 263-274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37971503

RESUMEN

AIMS/HYPOTHESIS: Early time-restricted carbohydrate consumption (eTRC) is a novel dietary strategy that involves restricting carbohydrate-rich food intake to the morning and early afternoon to align with circadian variations in glucose tolerance. We examined the efficacy, feasibility and safety of eTRC in individuals with type 2 diabetes under free-living conditions. METHODS: In this randomised, parallel-arm, open label, controlled trial, participants with type 2 diabetes and overweight/obesity (age 67.2±7.9 years, 47.8% women, BMI 29.4±3.7 kg/m2, HbA1c 49±5 mmol/mol [6.6±0.5%]) were randomised, using computer-generated random numbers, to a 12 week eTRC diet or a Mediterranean-style control diet with matched energy restriction and macronutrient distribution (50% carbohydrate, 30% fat and 20% protein). The primary outcome was the between-group difference in HbA1c at 12 weeks. Body composition, 14 day flash glucose monitoring and food diary analysis were performed every 4 weeks. Mixed meal tolerance tests with mathematical beta cell function modelling were performed at baseline and after 12 weeks. RESULTS: Twelve (85.7%) participants in the eTRC arm and 11 (84.6%) participants in the control arm completed the study, achieving similar reductions in body weight and fat mass. The two groups experienced comparable improvements in HbA1c (-3 [-6, -0.3] mmol/mol vs -4 [-6, -2] mmol/mol, corresponding to -0.2 [-0.5, 0]% and -0.3 [-0.5, -0.1]%, respectively, p=0.386), fasting plasma glucose, flash glucose monitoring-derived glucose variability and mixed meal tolerance test-derived glucose tolerance, insulin resistance, insulin clearance and plasma glucagon levels, without changes in model-derived beta cell function parameters, glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and non-esterified fatty acid levels. The two diets similarly reduced liver function markers and triglyceride levels, being neutral on other cardiometabolic and safety variables. In exploratory analyses, diet-induced changes in body weight and glucometabolic variables were not related to the timing of carbohydrate intake. CONCLUSIONS/INTERPRETATION: The proposed eTRC diet provides a feasible and effective alternative option for glucose and body weight management in individuals with type 2 diabetes, with no additional metabolic benefits compared with conventional dieting. TRIAL REGISTRATION: ClinicalTrials.gov NCT05713058 FUNDING: This study was supported by the European Society for Clinical Nutrition and Metabolism (ESPEN) and the Italian Society of Diabetology (SID).


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Peso Corporal , Glucosa
9.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995272

RESUMEN

Despite the recent progress on the solution-phase enzymatic synthesis of heparan sulfate (HS) and chondroitin sulfate (CS), solid-phase enzymatic synthesis has not been fully investigated. Here, we describe the solid-phase enzymatic synthesis of HS and CS backbone oligosaccharides using specialized linkers. We demonstrate the use of immobilized HS linker to synthesize CS, and the use of immobilized CS linker to synthesize HS. The linkers were then digested with chondroitin ABCase and heparin lyases, respectively, to obtain the products. Our findings uncover a potential approach for accelerating the synthesis of structurally homogeneous HS and CS oligosaccharides.


Asunto(s)
Sulfatos de Condroitina , Heparitina Sulfato , Liasa de Heparina , Oligosacáridos
10.
Plant Mol Biol ; 114(2): 29, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502380

RESUMEN

Advances in carbohydrate metabolism prompted its essential role in defense priming and sweet immunity during plant-pathogen interactions. Nevertheless, upstream responding enzymes in the sucrose metabolic pathway and associated carbohydrate derivatives underlying fungal pathogen challenges remain to be deciphered in Populus, a model tree species. In silico deduction of genomic features, including phylogenies, exon/intron distributions, cis-regulatory elements, and chromosomal localization, identified 59 enzyme genes (11 families) in the Populus genome. Spatiotemporal expression of the transcriptome and the quantitative real-time PCR revealed a minuscule number of isogenes that were predominantly expressed in roots. Upon the pathogenic Fusarium solani (Fs) exposure, dynamic changes in the transcriptomics atlas and experimental evaluation verified Susy (PtSusy2 and 3), CWI (PtCWI3), VI (PtVI2), HK (PtHK6), FK (PtFK6), and UGPase (PtUGP2) families, displaying promotions in their expressions at 48 and 72 h of post-inoculation (hpi). Using the gas chromatography-mass spectrometry (GC-MS)-based non-targeted metabolomics combined with a high-performance ion chromatography system (HPICS), approximately 307 metabolites (13 categories) were annotated that led to the quantification of 46 carbohydrates, showing marked changes between three compared groups. By contrast, some sugars (e.g., sorbitol, L-arabitol, trehalose, and galacturonic acid) exhibited a higher accumulation at 72 hpi than 0 hpi, while levels of α-lactose and glucose decreased, facilitating them as potential signaling molecules. The systematic overview of multi-omics approaches to dissect the effects of Fs infection provides theoretical cues for understanding defense immunity depending on fine-tuned Suc metabolic gene clusters and synergistically linked carbohydrate pools in trees.


Asunto(s)
Fusarium , Populus , Humanos , Sacarosa/metabolismo , Multiómica , Populus/genética , Populus/metabolismo , Carbohidratos , Hexosas/metabolismo
11.
J Am Chem Soc ; 146(15): 10608-10620, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564319

RESUMEN

The use of noncovalent interactions (NCIs) has received significant attention as a pivotal synthetic handle. Recently, the exploitation of unconventional NCIs has gained considerable traction in challenging reaction manifolds such as glycosylation due to their capacity to facilitate entry into difficult-to-access sugars and glycomimetics. While investigations involving oxacyclic pyrano- or furanoside scaffolds are relatively common, methods that allow the selective synthesis of biologically important iminosugars are comparatively rare. Here, we report the capacity of a phosphonochalcogenide (PCH) to catalyze the stereoselective α-iminoglycosylation of iminoglycals with a wide array of glycosyl acceptors with remarkable protecting group tolerance. Mechanistic studies have illuminated the counterintuitive role of the catalyst in serially activating both the glycosyl donor and acceptor in the up/downstream stages of the reaction through chalcogen bonding (ChB). The dynamic interaction of chalcogens with substrates opens up new mechanistic opportunities based on iterative ChB catalyst engagement and disengagement in multiple elementary steps.

12.
Curr Issues Mol Biol ; 46(6): 6139-6168, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38921038

RESUMEN

The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.

13.
EMBO J ; 39(11): e103477, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32338774

RESUMEN

Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células A549 , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Fibrosis , Células HEK293 , Humanos
14.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825718

RESUMEN

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Asunto(s)
Ensilaje , Zea mays , Zea mays/genética , Genotipo , Clima Tropical , Fermentación , Almidón , Carbohidratos , Proteínas de Plantas , Pakistán , Agricultura
15.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760701

RESUMEN

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Asunto(s)
Antioxidantes , Gases em Plasma , Plantones , Solanum lycopersicum , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Gases em Plasma/farmacología , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo
16.
Chembiochem ; 25(5): e202300860, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233350

RESUMEN

Carbohydrates are common co-solutes for the stabilization of proteins. The effect of carbohydrate solutions on the stability of collagen, the most abundant protein in mammals, is, however, underexplored. In this work, we studied the thermal stability of collagen triple helices derived from a molecularly defined collagen model peptide (CMP), Ac-(Pro-Hyp-Gly)7 -NH2 , in solutions of six common mono- and disaccharides. We show that the carbohydrates stabilize the collagen triple helix in a concentration-dependent manner, with an increase of the melting temperature of up to 17 °C. In addition, we show that the stabilizing effect is similar for all studied sugars, including trehalose, which is otherwise considered a privileged bioprotectant. The results provided insight into the effects of sugar co-solutes on collagen triple helices and can aid the selection of storage environments for collagen-based materials and probes.


Asunto(s)
Colágeno , Disacáridos , Animales , Temperatura , Trehalosa , Mamíferos
17.
Chembiochem ; 25(5): e202300832, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220779

RESUMEN

Amylose, the linear polymer of α-1,4-linked glucopyranose units, is known to crystallize as a parallel double helix, but evidence of this duplex forming in solution has remained elusive for decades. We show how the dimerization of short amylose chains can be detected in solution using NMR spectroscopy when the glucans are labeled at the reducing-end with an aromatic moiety that overcomes chemical shift degeneracy leading to distinct signals for the single-stranded and duplex amylose. A set of α-1,4 glucans with varying lengths of 6, 12, 18, and 22 glucose units and a 4-aminobenzamide label were synthesized, enabling the first systematic thermodynamic study of the association of amylose in solution. The dimerization is enthalpically driven, entropically unfavorable and beyond a minimum length of 12, each additional pair of glucose residues stabilizes the duplex by 0.85 kJ mol-1 . This fundamental knowledge provides a basis for a quantitative understanding of starch structure, gelation and enzymatic digestion, and lays the foundations for the strategic use of α-1,4-glucans in the development of self-assembled materials.


Asunto(s)
Amilosa , Almidón , Dimerización , Glucanos , Glucosa
18.
Mass Spectrom Rev ; 42(5): 1984-2206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36468275

RESUMEN

This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.

19.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433329

RESUMEN

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Asunto(s)
Escarabajos , Picea , Gorgojos , Animales , Sequías , Picea/microbiología , Corteza de la Planta/química , Enfermedades de las Plantas/microbiología , Terpenos , Fenoles , Noruega , Agua/análisis , Carbohidratos/análisis
20.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853424

RESUMEN

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Asunto(s)
Betula , Hexosas , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Betula/fisiología , Betula/metabolismo , Hexosas/metabolismo , Secuestro de Carbono , Agua/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda