Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-31274970

RESUMEN

We report on a flow velocity measurement technique based on snap-through detection of an electrostatically actuated, bistable micromechanical beam. We show that induced elecro-thermal Joule heating and the convective air cooling change the beam curvature and consequently the critical snap-through voltage (VST ). Using single crystal silicon beams, we demonstrate the snap-through voltage to flow velocity sensitivity of dV ST/du ≈ 0.13 V s m -1 with a power consumption of ≈ 360 µ W. Our experimental results were in accord with the reduced order, coupled, thermo-electro-mechanical model prediction. We anticipate that electrostatically induced snap-through in curved, micromechanical beams will open new directions for the design and implementation of downscaled flow sensors for autonomous applications and environmental sensors.

2.
Appl Phys Lett ; 108(7)2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27141103

RESUMEN

We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

3.
Proc Math Phys Eng Sci ; 471(2177): 20150072, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-27547104

RESUMEN

In this paper, the snap-through buckling of an initially curved microbeam subject to an electrostatic force, accounting for fringing field effect, is investigated. The general governing equations of the curved microbeam are developed using Euler-Bernoulli beam theory and used to develop a new criterion for the snap-through buckling of that beam. The size effect of the microbeam is accounted for using the modified couple stress theory, and intermolecular effects, such as van der Waals and Casimir forces, are also included in our snap-through formulations. The snap-through governing equations are solved using Galerkin decomposition of the deflection. The results of our work enable us to carefully characterize the snap-through behaviour of the initially curved microbeam. They further reveal the significant effect of the beam size, and to a much lesser extent, the effect of fringing field and intermolecular forces, upon the snap-through criterion for the curved beam.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda