Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928247

RESUMEN

The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.


Asunto(s)
Pruebas Genéticas , Enfermedades de la Retina , Secuenciación Completa del Genoma , Humanos , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma/métodos , Masculino , Femenino , Suiza , Estudios de Cohortes , Adulto , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma/métodos , Biología Computacional/métodos , Persona de Mediana Edad , Niño , Adolescente , Linaje
2.
Clin Genet ; 103(6): 693-698, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705481

RESUMEN

Whole-genome sequencing (WGS) now allows identification of multiple variants in non-coding regions. The large number of variants identified by WGS however complicates their interpretation. Through identification of the first deep intronic variant in NPHS2, which encodes podocin, a protein implicated in autosomal recessive steroid resistant nephrotic syndrome (SRNS), we compare herein three different tools including a newly developed targeted NGS-based RNA-sequencing to explore the splicing effect of intronic variations. WGS identified two different variants in NPHS2 eventually involved in the disease. Through RT-PCR, exon-trapping Minigene assay and targeted RNA sequencing, we were able to identify the splicing defect in NPHS2 mRNA from patient kidney tissue. Only targeted RNA-seq simultaneously analyzed the effect of multiple variants and offered the opportunity to quantify consequences on splicing. Identifying deep intronic variants and their role in disease is of utmost importance. Alternative splicing can be predicted by in silico tools but always requires confirmation through functional testing with RNA analysis from the implicated tissue remaining the gold standard. When several variants with potential effects on splicing are identified by WGS, a targeted RNA sequencing panel could be of great value.


Asunto(s)
Síndrome Nefrótico , Humanos , Mutación , Secuenciación Completa del Genoma , Síndrome Nefrótico/genética , ARN Mensajero/genética
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675087

RESUMEN

PAX6 haploinsufficiency causes aniridia, a congenital eye disorder that involves the iris, and foveal hypoplasia. Comprehensive screening of the PAX6 locus, including the non-coding regions, by next-generation sequencing revealed four deep-intronic variants with potential effects on pre-RNA splicing. Nevertheless, without a functional analysis, their pathogenicity could not be established. We aimed to decipher their impact on the canonical PAX6 splicing using in vitro minigene splicing assays and nanopore-based long-read sequencing. Two multi-exonic PAX6 constructs were generated, and minigene assays were carried out. An aberrant splicing pattern was observed for two variants in intron 6, c.357+136G>A and c.357+334G>A. In both cases, several exonization events, such as pseudoexon inclusions and partial intronic retention, were observed due to the creation or activation of new/cryptic non-canonical splicing sites, including a shared intronic donor site. In contrast, two variants identified in intron 11, c.1032+170A>T and c.1033-275A>C, seemed not to affect splicing processes. We confirmed the high complexity of alternative splicing of PAX6 exon 6, which also involves unreported cryptic intronic sites. Our study highlights the importance of integrating functional studies into diagnostic algorithms to decipher the potential implication of non-coding variants, usually classified as variants of unknown significance, thus allowing variant reclassification to achieve a conclusive genetic diagnosis.


Asunto(s)
Aniridia , Empalme del ARN , Humanos , Empalme Alternativo/genética , Aniridia/genética , Intrones/genética , Mutación , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Sitios de Empalme de ARN , Empalme del ARN/genética
4.
Hum Mutat ; 43(11): 1590-1608, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510381

RESUMEN

While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Perfilación de la Expresión Génica , Pruebas Genéticas , Humanos , Intrones , ARN
5.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806449

RESUMEN

Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Humanos , Intrones/genética , Mutación , Neoplasias/genética , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
6.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673358

RESUMEN

Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.


Asunto(s)
Empalme Alternativo , Enfermedades Genéticas Congénitas , Retina/metabolismo , Enfermedades de la Retina , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Retina/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
7.
Genet Med ; 22(7): 1235-1246, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307445

RESUMEN

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Asunto(s)
Degeneración Macular , Transcriptoma , Transportadoras de Casetes de Unión a ATP/genética , Genómica , Humanos , Intrones , Degeneración Macular/genética , Mutación , Linaje , Enfermedad de Stargardt
8.
Hum Genomics ; 13(1): 8, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755276

RESUMEN

BACKGROUND: The clinical significance of SPINK1 intronic variants in chronic pancreatitis has been previously assessed by various approaches including a cell culture-based full-length gene assay. A close correlation between the results of this assay and in silico splicing prediction was apparent. However, until now, a clinical diagnostic pipeline specifically designed to classify SPINK1 intronic variants accurately and efficiently has been lacking. Herein, we present just such a pipeline and explore its efficacy and potential utility in potentiating the classification of newly described SPINK1 intronic variants. RESULTS: We confirm a close correlation between in silico splicing prediction and results from the cell culture-based full-length gene assay in the context of three recently reported pathogenic SPINK1 intronic variants. We then integrated in silico splicing prediction and the full-length gene assay into a stepwise approach and tested its utility in the classification of two novel datasets of SPINK1 intronic variants. The first dataset comprised 16 deep intronic variants identified in 52 genetically unexplained Chinese chronic pancreatitis patients by sequencing the entire intronic sequence of the SPINK1 gene. The second dataset comprised five novel rare proximal intronic variants identified through the routine analysis of the SPINK1 gene in French pancreatitis patients. Employing a minor allele frequency of > 5% as a population frequency filter, 6 of the 16 deep intronic variants were immediately classified as benign. In silico prediction of the remaining ten deep intronic variants and the five rare proximal intronic variants with respect to their likely impact on splice site selection suggested that only one proximal intronic variant, c.194 + 5G > A, was likely to be of functional significance. Employing the cell culture-based full-length gene assay, we functionally analyzed c.194 + 5G > A, together with seven predicted non-functional variants, thereby validating their predicted effects on splicing in all cases. CONCLUSIONS: We demonstrated the accuracy and efficiency of in silico prediction in combination with the cell culture-based full-length gene assay for the classification of SPINK1 intronic variants. Based upon these findings, we propose an operational pipeline for classifying SPINK1 intronic variants in the clinical diagnostic setting.


Asunto(s)
Pancreatitis Crónica/genética , Isoformas de Proteínas , Inhibidor de Tripsina Pancreática de Kazal/genética , Pueblo Asiatico/genética , Células Cultivadas , Simulación por Computador , Frecuencia de los Genes , Técnicas Genéticas , Humanos , Intrones , Inhibidor de Tripsina Pancreática de Kazal/metabolismo , Población Blanca/genética
9.
Hum Mutat ; 40(10): 1749-1759, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31212395

RESUMEN

PURPOSE: Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS: Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS: Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS: smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Análisis Mutacional de ADN/métodos , Intrones , Sondas Moleculares , Mutación , Enfermedad de Stargardt/diagnóstico , Enfermedad de Stargardt/genética , Alelos , Biología Computacional , Exones , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Alemania , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Linaje , Empalme del ARN
10.
Hum Mutat ; 40(12): 2365-2376, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31397521

RESUMEN

Pathogenic variants in the ATP-binding cassette transporter A4 (ABCA4) gene cause a continuum of retinal disease phenotypes, including Stargardt disease. Noncanonical splice site (NCSS) and deep-intronic variants constitute a large fraction of disease-causing alleles, defining the functional consequences of which remains a challenge. We aimed to determine the effect on splicing of nine previously reported or unpublished NCSS variants, one near exon splice variant and nine deep-intronic variants in ABCA4, using in vitro splice assays in human embryonic kidney 293T cells. Reverse transcription-polymerase chain reaction and Sanger sequence analysis revealed splicing defects for 12 out of 19 variants. Four deep-intronic variants create pseudoexons or elongate the upstream exon. Furthermore, eight NCSS variants cause a partial deletion or skipping of one or more exons in messenger RNAs. Among the 12 variants, nine lead to premature stop codons and predicted truncated ABCA4 proteins. At least two deep-intronic variants affect splice enhancer and silencer motifs and, therefore, these conserved sequences should be carefully evaluated when predicting the outcome of NCSS and deep-intronic variants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mutación , Sitios de Empalme de ARN , Enfermedades de la Retina/genética , Empalme Alternativo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Intrones , Fenotipo , Análisis de Secuencia de ADN
11.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614660

RESUMEN

We investigated the prevalence of reported deep-intronic variants in a French cohort of 70 patients with Stargardt disease harboring a monoallelic pathogenic variant on the exonic regions of ABCA4. Direct Sanger sequencing of selected intronic regions of ABCA4 was conducted. Complete phenotypic analysis and correlation with the genotype was performed in case a known intronic pathogenic variant was identified. All other variants found on the analyzed sequences were queried for minor allele frequency and possible pathogenicity by in silico predictions. The second mutated allele was found in 14 (20%) subjects. The three known deep-intronic variants found were c.5196+1137G>A in intron 36 (6 subjects), c.4539+2064C>T in intron 30 (4 subjects) and c.4253+43G>A in intron 28 (4 subjects). Even though the phenotype depends on the compound effect of the biallelic variants, a genotype-phenotype correlation suggests that the c.5196+1137G>A was mostly associated with a mild phenotype and the c.4539+2064C>T with a more severe one. A variable effect was instead associated with the variant c.4253+43G>A. In addition, two novel variants, c.768+508A>G and c.859-245_859-243delinsTGA never associated with Stargardt disease before, were identified and a possible splice defect was predicted in silico. Our study calls for a larger cohort analysis including targeted locus sequencing and 3D protein modeling to better understand phenotype-genotype correlations associated with deep-intronic changes and patients' selection for clinical trials.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mutación , Análisis de Secuencia de ADN/métodos , Enfermedad de Stargardt/genética , Adulto , Anciano , Simulación por Computador , Femenino , Francia , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Intrones , Masculino , Persona de Mediana Edad , Fenotipo , Prevalencia , Estudios Retrospectivos , Adulto Joven
12.
Hemoglobin ; 42(2): 126-128, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30047296

RESUMEN

Sequence variants located in the introns of the ß-globin gene may affect the mRNA processing and cause ß-thalassemia (ß-thal). Sequence variants that change one of the invariant dinucleotides at the exon-intron boundaries may have fatal consequences for normal mRNA splicing. Intronic variants located far from obvious regulatory sequences can be more difficult to evaluate. There is a potential for misinterpretation of such sequence variants. Hence, thorough evaluation of patient data together with critical use of databases and in silico prediction tools are important. Here, we describe two rare sequence variants in the second intron of the ß-globin gene, HBB: c.316-70C>G and HBB: c.316-125A>G (NM_000518.4), both previously reported as variants causing ß-thal, and later as benign sequence variants. Due to the limited number of published cases and inconsistent interpretations, the significance of these sequence variants has been unclear. We have identified these two sequence variants in multiple individuals, alone and in a variety of combinations with other δ- and ß-globin defects, and we find no influence of the sequence variants on the phenotype.


Asunto(s)
Intrones/genética , Polimorfismo de Nucleótido Simple , Globinas beta/genética , Secuencia de Bases , Variación Genética , Humanos , Talasemia beta/genética
13.
Hum Mutat ; 36(1): 43-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25363634

RESUMEN

Variants in ABCA4 are responsible for autosomal-recessive Stargardt disease and cone-rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the "missing" variants in these cases, we performed multiplex ligation-dependent probe amplification-based deletion scanning of ABCA4. In addition, we sequenced the promoter region, fragments containing five deep-intronic splice variants, and 15 deep-intronic regions containing weak splice sites. Heterozygous deletions spanning ABCA4 exon 5 or exons 20-22 were found in two probands, heterozygous deep-intronic variants were identified in six probands, and a deep-intronic variant was found together with an exon 20-22 deletion in one proband. Based on ophthalmologic findings and characteristics of the identified exonic variants present in trans, the deep-intronic variants V1 and V4 were predicted to be relatively mild and severe, respectively. These findings are important for proper genetic counseling and for the development of variant-specific therapies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Estudios de Asociación Genética/métodos , Degeneración Macular/congénito , Retinitis Pigmentosa/genética , Exones , Femenino , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones , Degeneración Macular/genética , Masculino , Linaje , Análisis de Secuencia de ADN , Eliminación de Secuencia , Enfermedad de Stargardt
14.
Gene ; 930: 148862, 2024 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-39151676

RESUMEN

Dystrophinopathies are a group of neuromuscular disorders, inherited in an X-linked recessive manner, caused by pathogenic variants in the DMD gene. Copy number variation detection and next generation sequencing allow the detection of around 99 % of the pathogenic variants. However, some patients require mRNA studies from muscle biopsies to identify deep intronic pathogenic variants. Here, we report a child suspected of having Duchenne muscular dystrophy, with a muscle biopsy showing dystrophin deficiency, and negative molecular testing for deletions, duplications, and small variants. mRNA analysis from muscle biopsy revealed a pseudoexon activation that introduce a premature stop codon into the reading frame. gDNA sequencing allowed to identified a novel variant, c.832-186 T>G, which creates a cryptic donor splice site, recognizing the underlying mechanism causing the pseudoexon insertion. This case highlights the usefulness of the mRNA analysis from muscle biopsy when routine genetic testing is negative and clinical suspicion of dystrophinopathies remains the main clinical diagnosis suspicion.


Asunto(s)
Codón sin Sentido , Distrofina , Intrones , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Masculino , Exones , Niño , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
HGG Adv ; 5(3): 100314, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38816995

RESUMEN

Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.


Asunto(s)
Enfermedades de la Retina , Secuenciación Completa del Genoma , Humanos , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Masculino , Femenino , Italia , Niño , Adulto , Adolescente , Predisposición Genética a la Enfermedad/genética , Proteínas del Citoesqueleto/genética , Preescolar , Cadherinas/genética , Mutación , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Relacionadas con las Cadherinas , Adulto Joven , Transportadoras de Casetes de Unión a ATP/genética , Persona de Mediana Edad , Proteínas del Ojo/genética , Antígenos de Neoplasias/genética , Linaje , Proteínas de Ciclo Celular
16.
J Neurol ; 270(2): 925-937, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36319768

RESUMEN

BACKGROUND: Phenotypic heterogeneity within or between families with a same deep-intronic splice-altering variant in the DMD gene has never been systematically analyzed. This study aimed to determine the phenotypic and genetic characteristics of patients with deep-intronic DMD variants. METHODS: Of 1338 male patients with a suspected dystrophinopathy, 38 were confirmed to have atypical pathogenic DMD variants via our comprehensive genetic testing approach. Of the 38 patients, 30 patients from 22 unrelated families with deep-intronic DMD variants underwent a detailed clinical and imaging assessment. RESULTS: Nineteen different deep-intronic DMD variants were identified in the 30 patients, including 15 with Duchenne muscular dystrophy (DMD), 14 with Becker muscular dystrophy (BMD), and one with X-linked dilated cardiomyopathy. Of the 19 variants, 15 were single-nucleotide variants, 2 were structural variants (SVs), and 2 were pure-intronic large-scale SVs causing aberrant inclusion of other protein-coding genes sequences into the mature DMD transcripts. The trefoil with single fruit sign was observed in 18 patients and the concentric fatty infiltration pattern was observed in 2 patients. Remarkable phenotypic heterogeneity was observed not only in skeletal but also cardiac muscle involvement in 2 families harboring a same deep-intronic variant. Different skeletal muscle involvement between families with a same variant was observed in 4 families. High inter-individual phenotypic heterogeneity was observed within two BMD families and one DMD family. CONCLUSIONS: Our study first highlights the variable phenotypic expressivity of deep-intronic DMD variants and demonstrates a new class of deep-intronic DMD variants, i.e., pure-intronic SVs involving other protein-coding genes.


Asunto(s)
Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Humanos , Masculino , Mutación , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/genética , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Músculo Esquelético/diagnóstico por imagen
17.
HGG Adv ; 4(4): 100237, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705246

RESUMEN

The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant, while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207 of 520 (39.8%) naive or unsolved cases and 70 of 202 (34.7%) monoallelic cases, while additional causal variants were identified in 54 of 136 (39.7%) probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in Stargardt disease cases.


Asunto(s)
Degeneración Macular , Distrofias Retinianas , Humanos , Células HEK293 , Mutación/genética , Degeneración Macular/genética , Distrofias Retinianas/genética , Análisis de Secuencia , Transportadoras de Casetes de Unión a ATP/genética
18.
Front Genet ; 14: 1197681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485342

RESUMEN

Autosomal recessive spinocerebellar ataxia type 20, SCAR20 (MIM: 616354) is a rare syndromic form of hereditary ataxias. It characterized by the presence of progressive ataxia, intellectual developmental disorder, autism and dysmorphic features. The disease caused by biallelic variants in SNX14 gene that lead to loss of protein function. Typically, these variants result in the formation of a premature stop codon, a shift in the reading frame or a variant in canonical splicing sites, as well as gross rearrangements. Here we present the first case of a deep intronic variant c.462-589A>G in SNX14 identified in two sisters with SCAR20 from a consanguineous family. This variant resulted in the inclusion of a pseudo-exon 82 nucleotides long and the formation of a premature stop codon, leading to the production of a truncated protein (NP_722523.1:p.Asp155Valfs*8). Following an extensive diagnostic search, the diagnosis was confirmed using trio whole genome sequencing. This case contributes to expanding the spectrum of potential genetic variants associated with SCAR20.

19.
Mol Genet Metab Rep ; 32: 100889, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35782291

RESUMEN

Introduction: Pathogenic variants in the pyruvate carboxylase (PC) gene cause a wide spectrum of recessive phenotypes, ranging from the early-onset fatal encephalopathy to the adult-onset benign form. Results: Patient 1 is a 6 y.o. boy with ataxia, hypoglycemia and episodes of lactic acidosis. WGS revealed the novel heterozygous missense variant c.1372A > G (p.Asn458Asp) in the PC gene. Additional analysis revealed discordant reads mapped to chromosomes 11 and 1, so a reciprocal translocation disrupted the PC gene was suspected. The translocation was validated via FISH-analysis and Sanger sequencing of its boundaries.Patient 2 is a 13 y.o. girl with psychomotor delay, episodes of lactic acidosis and ketonuria. WES revealed the novel homozygous intronic variant c.1983-116C > T. The PC's mRNA analysis demonstrated the exonization of several intron 16 sequences and some residual amount of WT mRNA isoform.Two other patients had more severe course of the disease. Their genotype represents missense variants in compound heterozygous and homozygous state (c.1876C > T (p.Arg626Trp), c.2606G > C (p.Gly869Ala), c.2435C > A (p.Ala812Asp). Conclusion: In patients with metabolic crises, lactic acidosis and hypoglycemia analysis of PC gene is recommended. WGS with deep bioinformatic analysis should be taken into consideration when none or the only one pathogenic variant in the PC gene is found.

20.
Front Genet ; 13: 852764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432457

RESUMEN

Background: Menkes disease (MD) is a rare X-linked connective tissue disorder of copper metabolism caused by pathogenic variant(s) in ATP7A gene. The aim of the present study is to determine the clinical characteristics and molecular basis of one patient with MD. Methods: One 10-month-old Chinese boy who met the clinical manifestations of MD was enrolled in this study. Whole genome sequencing (WGS) was performed in the patient in order to identify the variant(s), followed by Sanger sequencing. RNA sequencing (RNA-seq) from whole blood was subsequently applied to assess the effect of variant on transcription levels, and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed for further validation. In addition, X chromosome inactivation (XCI) status of the patient's mother at the DNA level was measured by capillary electrophoresis. Results: The patient suffered from intermittent convulsions for more than 6 months, with psychomoto retardation and neurodegenerations. The patient also had curly hair, hypopigmented skin, cutis laxa, decreased muscle strength and hypotonia. MRI showed the intracranial arteries were tortuous with some "spiral" changes. The patient's serum ceruloplasmin level was low. WGS revealed one novel hemizygous variant, c.2627-501C > T (NM_000,052.7), located in the deep intronic sequence of ATP7A gene. Sanger sequencing confirmed that the variant was inherited from his mother. RNA-seq confirmed the variant itself, and identified a pseudo-exon inserted between exons 12 and 13 in mRNA of ATP7A. The sequencing results of RT-PCR from the patient confirmed this finding, while neither of his parents detected aberrant splicing. The Capillary electrophoresis results showed that the patient's mother had a skewed XCI. Conclusion: Our finding of the variant enlarges the variant spectrum in the ATP7A gene. This is a novel deep intronic variant which leads to the activation of a pseudo-exons in the ATP7A gene, and it demonstrates the usefulness of WGS combined with RNA-seq, in terms of revealing disease-causing variants in non-coding regions. Furthermore, the fact that the deep intronic variants cause disease by the activation of pseudo-exon inclusion indicates that in MD this might be an important mechanism.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda