Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biotechnol Bioeng ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837221

RESUMEN

Advances in upstream production of biologics-particularly intensified fed-batch processes beyond 10% cell solids-have severely strained harvest operations, especially depth filtration. Bioreactors containing high amounts of cell debris (more than 40% particles <10 µm in diameter) are increasingly common and drive the need for more robust depth filtration processes, while accelerated timelines emphasize the need for predictive tools to accelerate development. Both needs are constrained by the current limited mechanistic understanding of the harvest filter-feedstream system. Historically, process development relied on screening scale-down depth filter devices and conditions to define throughput before fouling, indicated by increasing differential pressure and/or particle breakthrough (measured via turbidity). This approach is straightforward, but resource-intensive, and its results are inherently limited by the variability of the feedstream. Semi-empirical models have been developed from first principles to describe various mechanisms of filter fouling, that is, pore constriction, pore blocking, and/or surface deposit. Fitting these models to experimental data can assist in identifying the dominant fouling mechanism. Still, this approach sees limited application to guide process development, as it is descriptive, not predictive. To address this gap, we developed a hybrid modeling approach. Leveraging historical bench scale filtration process data, we built a partial least squares regression model to predict particle breakthrough from filter and feedstream attributes, and leveraged the model to demonstrate prediction of filter performance a priori. The fouling models are used to interpret and provide physical meaning to these computational models. This hybrid approach-combining the mechanistic insights of fouling models and the predictive capability of computational models-was used to establish a robust platform strategy for depth filtration of Chinese hamster ovary cell cultures. As new data continues to teach the computational models, in silico tools will become an essential part of harvest process development by enabling prospective experimental design, reducing total experimental load, and accelerating development under strict timelines.

2.
Appl Microbiol Biotechnol ; 108(1): 240, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413399

RESUMEN

Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification. Using suspension BHK-21 cells and a fusogenic oncolytic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV), a modified alternating tangential flow device (mATF) or tangential flow depth filtration (TFDF) systems were used for cell retention. As the hollow fibers of the former are characterized by a large internal lumen (0.75 mm; pore size 0.65 µm), membrane blocking by the multi-nucleated syncytia formed during infection could be prevented. However, virus particles were completely retained. In contrast, the TFDF filter unit (lumen 3.15 mm, pore size 2-5 µm) allowed not only to achieve high viable cell concentrations (VCC, 16.4-20.6×106 cells/mL) but also continuous vector harvesting and clarification. Compared to an optimized batch process, 11-fold higher infectious virus titers were obtained in the clarified permeate (maximum 7.5×109 TCID50/mL). Using HEK293-SF cells and a rVSV vector expressing a green fluorescent protein, perfusion cultivations resulted in a maximum VCC of 11.3×106 cells/mL and infectious virus titers up to 7.1×1010 TCID50/mL in the permeate. Not only continuous harvesting but also clarification was possible. Although the cell-specific virus yield decreased relative to a batch process established as a control, an increased space-time yield was obtained. KEY POINTS: • Viral vector production using a TFDF perfusion system resulted in a 460% increase in space-time yield • Use of a TFDF system allowed continuous virus harvesting and clarification • TFDF perfusion system has great potential towards the establishment of an intensified vector production.


Asunto(s)
Estomatitis Vesicular , Humanos , Animales , Células HEK293 , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/genética , Técnicas de Cultivo de Célula/métodos , Vectores Genéticos
3.
Biotechnol Bioeng ; 120(7): 1882-1890, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929487

RESUMEN

A number of studies have demonstrated that depth filtration can provide significant adsorptive removal of host cell proteins (HCP), but there is still considerable uncertainty regarding the underlying factors controlling HCP binding. This study compared the binding characteristics of two fine grade depth filters, the X0SP (polyacrylic fiber with a synthetic silica filter aid) and X0HC (cellulose fibers with diatomaceous earth (DE) as a filter aid), using a series of model proteins with well-defined physical characteristics. Protein binding to the X0SP filter was dominated by electrostatic interactions with greatest capacity for positively-charged proteins. In contrast, the X0HC filter showed greater binding of more hydrophobic proteins although electrostatic interactions also played a role. In addition, ovotransferrin showed unusually high binding capacity to the X0HC, likely due to interactions with metals in the DE. Scanning Electron Microscopy with Energy Dispersive Spectroscopy was used to obtain additional understanding of the binding behavior. These results provide important insights into the physical phenomena governing HCP binding to both fully synthetic and natural (cellulose + DE) depth filters.


Asunto(s)
Tierra de Diatomeas , Dióxido de Silicio , Tierra de Diatomeas/química , Filtración/métodos , Adsorción , Proteínas/química
4.
Biotechnol Bioeng ; 119(4): 1105-1114, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032027

RESUMEN

Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale-up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab-scale (SupracapTM 50) and pilot-scale (StaxTM ) depth filter modules, both employing dual-layer lenticular PDH4 media containing diatomaceous earth. The SupracapTM 50 showed a more rapid increase in transmembrane pressure and a more rapid DNA breakthrough during filtration of a Chinese Hamster Ovary cell culture fluid. These results were explained using CFD calculations which showed very different flow distributions within the modules. CFD predictions were further validated using measurements of the residence time distribution and dye binding in both the lab-scale and pilot-plant modules. These results provide important insights into the factors controlling the performance and scale-up of these commercially important depth filters as well as a framework that can be broadly applied to develop more effective depth filters and depth filtration processes.


Asunto(s)
Técnicas de Cultivo de Célula , Filtración , Animales , Células CHO , Recuento de Células , Técnicas de Cultivo de Célula/métodos , Cricetinae , Cricetulus , Filtración/métodos
5.
Molecules ; 26(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834122

RESUMEN

Textile industry production processes generate one of the most highly polluted wastewaters in the world. Unfortunately, the field is also challenged by the availability of relatively cheap and highly effective technologies for wastewater purification. The application of natural zeolite as a depth filter offers an alternative and potential approach for textile wastewater treatment. The performance of a depth filter treatment system can be deeply affected by the column depth and the characteristics of the wastewater to be treated. Regrettably, the information on the potential of these filter materials for the purification of textile wastewater is still scarce. Therefore, this study investigated the potential applicability of natural zeolite in terms of column depth for the treatment of textile wastewater. From the analysis results, it was observed that the filtration efficiencies were relatively low (6.1 to 13.7%) for some parameters such as total dissolved solids, electrical conductivity, chemical oxygen demand, and sodium chloride when the wastewater samples were subjected to the 0.5 m column depth. Relatively high efficiency of 82 and 93.8% was observed from color and total suspended solids, respectively, when the wastewater samples were subjected to the 0.5 m column depth. Generally, the 0.75 m column depth achieved removal efficiencies ranging from 52.3% to 97.5%, whereas the 1 m column depth achieved removal efficiencies ranging from 86.9% to 99.4%. The highest removal efficiency was achieved with a combination of total suspended solids and 1 m column depth (99.4%). In summary, the treatment approach was observed to be highly effective for the removal of total suspended solids, with a 93.8% removal efficiency when the wastewater was subjected to the 0.5 m column depth, 97.5% for 0.75 m column depth, and 99.4% for 1 m column depth. Moreover, up to 218.233 mg of color per g of the filter material was captured. The results derived in this study provide useful information towards the potential applicability of natural zeolite in the textile wastewater treatment field.

6.
Indian J Microbiol ; 61(3): 279-282, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294993

RESUMEN

In our modern world, biotechnology products play important roles not only in our health and culture, but also various industries such as food, agriculture, sewage treatment, biofuels, nutraceuticals, and pharmaceuticals. Rapid technological advances in biotechnology over the last few decades have allowed industrial integration of mammalian cells (like the Chinese hamster ovary cells) and algae cells in pharmaceutical and biofuel industries to produce commercial products and valuable biomolecules. However, the cost of cell harvest and recovery can become expensive depending on the harvesting technique, degree of purification, and intended use of the end-products. This has led to numerous research in exploring and developing efficient harvesting techniques. Therefore, in this review, the popular harvesting techniques and their recent applications will be discussed.

7.
Biotechnol Bioeng ; 116(7): 1669-1683, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883673

RESUMEN

Monoclonal antibody interchain disulfide bond reduction was observed in a Chinese Hamster Ovary manufacturing process that used single-use technologies. A similar reduction has been reported for processes that involved high mechanical shear recovery unit operations, such as continuous flow centrifugation and when the clarified harvest was stored under low dissolved oxygen (DO) conditions (Trexler-Schmidt et al., 2010. Biotechnology and Bioengineering, 106(3), 452-461). The work described here identifies disposable depth filtration used during cell culture harvest operations as a shear-inducing unit operation causing cell lysis. As a result, reduction of antibody interchain disulfide bonds was observed through the same mechanisms described for continuous flow centrifugation. Small-scale depth-filtration models were developed, and the differential pressure (Δ P) of the primary depth filter was identified as the key factor contributing to cell lysis. Strong correlations of Δ P and cell lysis were generated by measuring the levels of lactate dehydrogenase and thiol in the filtered harvest material. A simple risk mitigation strategy was implemented during manufacturing by providing an air overlay to the headspace of a single-use storage bag to maintain sufficient DO in the clarified harvest. In addition, enzymatic characterization studies determined that thioredoxin reductase and glucose-6-phosphate dehydrogenase are critical enzymes involved in antibody reduction in a nicotinamide adenine dinucleotide phosphate (NADP + )/NADPH-dependent manner.


Asunto(s)
Anticuerpos Monoclonales , Disulfuros/química , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Cricetulus , Filtración , Humanos , Oxidación-Reducción
8.
Biotechnol Bioeng ; 116(10): 2610-2620, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184373

RESUMEN

Depth filtration-based harvesting is widely used in mAb manufacturing to remove cell and process-related impurities. However, it has not been studied on control of product-related impurities, which are very critical for product quality. In this article, we studied the interactions of depth filter with high and low molecular weight species (HMWs and LMWs) for their direct removal from cell culture. The process parameters (filter, loading, temperature, and flux) were evaluated for adsorption of HMWs and LMWs by depth filters. The adsorption is significantly dependent on filter media and loading capacity and is mainly on the basis of hydrophobic interaction during harvesting. The HMW and LMW species were characterized as HMW1, HMW2, LMW1, and LMW2. The increasing binding from LMW2 to LMW1, HMW1, and HMW2 is correlated with their increasing hydrophobicity score. Adsorption using enriched HMW sample demonstrated similar total protein binding capacity (36-40 g/m2 ) between depth filters D0HC and X0HC. However, X0HC has stronger HMW binding than D0HC (71% vs 43% of bound protein), indicating more hydrophobic interaction in X0HC. HMW2 DBC on X0HC reached 12 g/m2 , similar to protein binding on hydrophobic interaction membrane adsorbers. Further study showed LMW can induce HMW formation. This study provides a critical understanding of HMW and LMW interaction with depth filters. The strategy of HMW and LMW control by depth filtration-based harvesting was implemented successfully in mAb manufacturing.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Filtración , Animales , Anticuerpos Monoclonales/química , Células CHO , Cricetulus , Peso Molecular
9.
J Memb Sci ; 570-571: 464-471, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31223185

RESUMEN

Depth filtration is a commonly-used bioprocessing unit operation for harvest clarification that reduces the levels of process- and product-related impurities such as cell debris, host-cell proteins, nucleic acids and protein aggregates. Since depth filters comprise multiple components, different functionalities may contribute to such retention, making the mechanisms by which different impurities are removed difficult to decouple. Here we probe the mechanisms by which double-stranded DNA (dsDNA) is retained on depth filter media by visualizing the distribution of fluorescently-labeled retained DNA on spent depth filter discs using confocal fluorescence microscopy. The extent of DNA displacement into the depth filter was found to increase with decreasing DNA length with increasing operational parameters such as wash volume and buffer ionic strength. Finally, using 5ethynyl-2'-deoxyuridine (EdU) to label DNA in dividing CHO cells, we showed that Chinese hamster ovary (CHO) cellular DNA in the lysate supernatant migrates deeper into the depth filter than the lysate re-suspended pellet, elucidating the role of the size of the DNA in its form as an impurity. Apart from aiding DNA purification and removal, our experimental approaches and findings can be leveraged in studying the transport and retention of nucleic acids and other impurities on depth filters at a small scale.

10.
Biotechnol Bioeng ; 115(8): 1938-1948, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29663326

RESUMEN

Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths <50 mM and correlated the adsorption data to bulk measured properties such as surface area, morphology, surface charge density, and composition. We also explored the role of each depth filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets.


Asunto(s)
Adsorción , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Biotecnología/métodos , Filtración/métodos , Proteínas/química , Proteínas/aislamiento & purificación , Concentración de Iones de Hidrógeno
11.
Prep Biochem Biotechnol ; 48(9): 808-814, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30265189

RESUMEN

Chemically inactivated tetanus toxin (tetanus toxoid, TT), purified from cultures of a virulent Clostridium tetani strain, is the active pharmaceutical ingredient of anti-tetanus vaccines. Culture clarification for TT production and is usually performed by filtration-based techniques. Final clarification of the culture supernatant is achieved by passage through 0.2 µm pore size filtering membranes. Large particles removal (primary clarification) before final filtration (secondary clarification) reduces costs of the overall clarification process. With this aim, chitosan-induced particle aggregation was assessed as an alternative for primary clarification. Three chitosan variants were tested with similar results. Optimal clarification of culture supernatant was achieved by the addition of 8 mg chitosan per l of culture. Extrapolation analysis of filter sizing results indicate that 100 l of chitosan-treated supernatant can be finally filtered with a 0.6 m2 normal filtration cartridge of 0.45 + 0.2 µm pore size. The clarified material is compatible with current standard downstream processing techniques for TT purification. Thus, chitosan-induced particle aggregation is a suitable operation for primary clarification.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Quitosano/química , Toxoide Tetánico/aislamiento & purificación , Técnicas de Cultivo de Célula/economía , Clostridium tetani/metabolismo , Costos y Análisis de Costo , Filtración/métodos , Floculación , Toxoide Tetánico/biosíntesis
12.
Protein Expr Purif ; 134: 96-103, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28414067

RESUMEN

Recombinant therapeutic proteins are typically produced through cell culture process. Host cell proteins (HCPs) are endogenous proteins derived from the host cells used for such bioproduction. HCPs form a major class of process-related impurities and even at low levels they can potentially compromise the safety and efficacy of biopharmaceuticals. Therefore, they need to be adequately removed via the downstream process. HCPs are complex mixtures with diverse physiochemical properties, and certain subpopulations can bind to the intended product. Hence reducing them to the generally accepted level can be challenging. This article reviews effective HCP removing strategies at different stages of downstream process for monoclonal antibodies and Fc-fusion proteins. When used in combination, these strategies can greatly enhance the chance of meeting the drug substance specifications for residual HCP.


Asunto(s)
Anticuerpos Monoclonales , Expresión Génica , Fragmentos Fc de Inmunoglobulinas , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Línea Celular , Humanos , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
13.
Sep Purif Technol ; 163: 30-38, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32288608

RESUMEN

Nanofibrous filter have been proven effective to remove nano-aerosols with size less than 100 nm. Cleaning is required after long-term use; however, very little has been published on the subject. An experimental investigation has been launched to determine backpulse, backblow and combined backpulse-backblow on cleaning of a loaded nanofiber filter. Nylon 6 nanofiber filters were loaded with polydispersed NaCl particles, 60% < 100 nm and 90% < 160 nm, generated from an aerosol generator. Air jets in form of backpulse, backblow and their combined mode were used to clean a loaded filter. During cleaning, the filter cake was removed first for which the pressure drop across the loaded filter decreased rapidly, followed by loosely attached aerosols in the filter being removed with finite pressure drop reduction at a reasonable rate, ending in the final stage for which much lesser aerosols were being removed. Ultimately, the filter reached a residual pressure drop which was higher than that of the initial clean filter indicating residual aerosols were trapped both in the cake heel and filter. Backpulse has been found to be more effective in removing the cake from the filter surface, whereas backblow provides an added advantage of removing by convection of the detached aerosols away from the filter preventing recapture. The synergistic combination of backpulse-backblow provides the best cleaning performance of a nanofibrous filter loaded with nano-aerosols.

14.
Biotechnol Prog ; 40(2): e3409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37985144

RESUMEN

Depth filtration significantly impacts efficiency of lentiviral (LV) vector purification process. However, it is often deprioritized in the overall scope of viral vector manufacturing process optimization. The demand for LV vectors has increased with the rise in disease indications, making it crucial to improve current manufacturing processes. Upstream bioreactor process intensification has enabled cell densities of over 107 viable cells/mL, creating challenges for harvest unit operations. The larger size of LV vectors and their physiochemical similarity to host cell-DNA (HC-DNA) and poor clarification performance causes significant challenges for the subsequent chromatography-based purifications. As a result, a robust and scalable harvest of LV process is needed, especially for LV in vivo therapeutic quality needs. In this study, we systematically evaluated the overlooked yet important issue of depth filtration systems to improve enveloped LV functional vector recovery. We found that an established depth filtration system in process A that provided 94% (n = 6) LV functional recovery could not be translated to intensified Process B cell culture. Hence, the depth filtration process became a bottleneck for the purification performance in an intensified process. We demonstrated an improvement in LV functional vector recovery from 34% to 82% via filter train optimization for an intensified suspension cell culture system (>107 cells/mL with higher titer), while still maintaining a loading throughput of ≥82 L/m2 and turbidity ≤20 NTU. It was demonstrated that the two or three-stage depth filtration scheme is scalable and more suitable for high cell density culture for large scale for LV manufacturing process.


Asunto(s)
Filtración , Lentivirus , Lentivirus/genética , Reactores Biológicos , Vectores Genéticos , Técnicas de Cultivo de Célula , ADN
15.
Biotechnol Bioeng ; 110(11): 2928-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23740533

RESUMEN

Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.


Asunto(s)
Anticuerpos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Fraccionamiento Químico/métodos , Filtración/métodos , Floculación , Tecnología Farmacéutica/métodos , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/aislamiento & purificación
16.
Biotechnol Prog ; 39(2): e3323, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598038

RESUMEN

A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process-related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2-micron membrane filter, clarify the HCCF based on size-exclusion, adsorptive, and charge-based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single-stage CCD, is identified as an alternative strategy to a three-stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single-stage clarification process was compared to a three-stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%-30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single-stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.


Asunto(s)
Reactores Biológicos , Cromatografía , Cricetinae , Animales , Cricetulus , Células CHO , Filtración/métodos , Proteínas Recombinantes/genética
17.
Mol Ther Methods Clin Dev ; 29: 93-107, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-36994313

RESUMEN

For gene therapies to become more accessible and affordable treatment options, process intensification is one possible strategy to increase the number of doses generated per batch of viral vector. Process intensification for lentiviral vector manufacturing can be achieved by enabling perfusion in the production bioreactor when applied in tandem with a stable producer cell line, allowing for significant expansion of cells and production of lentiviral vectors without the need for transfer plasmids. Tangential flow depth filtration was used to achieve an intensified lentiviral vector production by enabling perfusion to expand cell density and allow for continuous separation of lentiviral vectors from producer cells. Hollow-fiber depth filters made of polypropylene with 2- to 4-µm channels demonstrated high filter capacity, extended functional life, and efficient separation of lentiviral vectors from producer cells and debris when used for this intensified process. We anticipate that process intensification with tangential flow depth filtration at 200-L scale from a suspension culture can produce on the order of magnitude of 10,000 doses per batch of lentiviral vectors required for CAR T or TCR cell and gene therapy that would require approximately 2 × 109 transducing units per dose.

18.
Front Bioeng Biotechnol ; 10: 957268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110323

RESUMEN

Protein hydrolysates are one of the most valuable products that can be obtained from lipid-extracted microalgae (LEA). The advantages of protein hydrolysates over other protein products encompass enhanced solubility, digestibility, and potential bioactivity. The development of an economically feasible process to produce protein hydrolysates depends on maximizing the recovery of hydrolyzed native protein from the lipid-extracted algal biomass and subsequent fractionation of hydrolyzed protein slurry. Previously, we reported a method for fractionation of enzymatically generated protein hydrolysates by acidic precipitation of algal cell debris and unhydrolyzed protein, precipitate wash, centrifugation, and depth filtration. The present study evaluates tangential flow ultrafiltration as a single-step alternative to centrifugation, precipitate wash, and depth filtration. The results demonstrate that the tangential flow ultrafiltration process has a potential that deserves further investigation. First, the membrane diafiltration process uses a single and easily scalable unit operation (tangential flow filtration) to separate and "wash out" hydrolyzed protein from the algal residue. Second, the protein recovery yield achieved with the tangential flow process was >70% compared to 64% previously achieved by centrifugation and depth filtration methods. Finally, protein hydrolysates obtained by membrane ultrafiltration exhibited slightly better heat and pH stability.

19.
J Extracell Vesicles ; 11(8): e12256, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35942823

RESUMEN

We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.


Asunto(s)
Vesículas Extracelulares , Cromatografía en Gel , Vesículas Extracelulares/metabolismo , Filtración , Plasma , Ultracentrifugación/métodos
20.
Water Res X ; 17: 100156, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36177246

RESUMEN

Microplastics (MPs) are ubiquitous in the environment and have been found in every environmental compartment. Wastewater and wastewater treatment plants (WWTPs) have been identified as possible point sources contributing to the emission of microplastic particles (MPP) into the aquatic environment. So far, MPP in wastewater effluents have mainly been analyzed by spectroscopic methods resulting in concentrations as number per volume. In this study, we present mass concentrations in the secondary effluents of four German municipal WWTPs, removal efficiencies of seven post-treatment systems and the resulting load emissions. Differential Scanning Calorimetry (DSC) was used for the analysis of semi-crystalline MPs. The concentrations of secondary effluents ranged from 0.1 to 19.6 µg L-1. Removal efficiencies > 94% were found for a microfiltration membrane (MF), two cloth types of a pile cloth media filter (PCMF), a micro strainer, a discontinuous downflow granulated activated carbon filter (GAC) and a powdered activated carbon (PAC) stage with clarifier and rapid sand filtration. A rapid sand filter (RSF) at WWTP B showed a removal efficiency of 82.38%. Only a continuous upflow GAC filter at WWTP C proved to be unsuitable for MP removal with an average removal efficiency of 1.9%.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda