Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 184(9): 2412-2429.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33852913

RESUMEN

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Biológico Activo , Células HeLa , Humanos , Transporte de Proteínas
2.
J Virol ; 97(7): e0018023, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338368

RESUMEN

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Asunto(s)
Retículo Endoplásmico , Hepatitis C , Humanos , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vías Secretoras , Hepacivirus/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte de Proteínas , Hepatitis C/metabolismo , Estadios del Ciclo de Vida , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
3.
J Cell Sci ; 126(Pt 11): 2534-44, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23549786

RESUMEN

Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately, the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position at the junction between the IM and the vacuolar membrane, termed the vacuole-IM contact site (VICS). By contrast, Atg1, Atg8 and the Atg16-Atg12-Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the 'IM' pattern. The Atg2-Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic reticulum exit sites. Thus, we designate these dots as the 'IM edge' pattern. These data suggest that Atg proteins play individual roles at spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein during autophagosome formation.


Asunto(s)
Autofagia/fisiología , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fagosomas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Autophagy ; 20(7): 1673-1680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478967

RESUMEN

Macroautophagy/autophagy is the process by which cells degrade their cytoplasmic proteins or organelles in vacuoles to maintain cellular homeostasis under severe environmental conditions. In the yeast Saccharomyces cerevisiae, autophagy-related (Atg) proteins essential for autophagosome formation accumulate near the vacuole to form the dot-shaped phagophore assembly site/pre-autophagosomal structure (PAS). The PAS then generates the phagophore/isolation membrane (PG), which expands to become a closed double-membrane autophagosome. Hereinafter, we refer to the PAS, PG, and autophagosome as autophagy-related structures (ARSs). During autophagosome formation, Atg2 is responsible for tethering the ARS to the endoplasmic reticulum (ER) via ER exit sites (ERESs), and for transferring phospholipids from the ER to ARSs. Therefore, ARS and the ER are spatially close in the presence of Atg2 but are separated in its absence. Because the contact of an ARS with the ER must be established at the earliest stage of autophagosome formation, it is important to know whether the ARS is tethered to the ER. In this study, we developed a rapid and objective method to estimate tethering of the ARS to the ER by measuring the distance between the ARS and ERES under fluorescence microscopy, and found that tethering of the ARS to the ER was lost without Atg1. This method might be useful to predict the tethering activity of Atg2.Abbreviation: ARS, autophagy-related structure; Dautas, automated measurement of the distance between autophagy-related structures and ER exit sites analysis system; ERES, endoplasmic reticulum exit site; PAS, phagophore assembly site/pre-autophagosomal structure; PCR, polymerase chain reaction; PG, phagophore/isolation membrane; prApe1, precursor of vacuolar aminopeptidase I; Qautas, quantitative autophagy-related structure analysis system; SD/CA; synthetic dextrose plus casamino acid medium; WT, wild-type.


Asunto(s)
Autofagosomas , Autofagia , Retículo Endoplásmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Autofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Vacuolas/metabolismo
5.
Autophagy ; 18(7): 1613-1628, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34720018

RESUMEN

ABBREVIATIONS: ATG2: autophagy related 2; BECN1: beclin 1; COPII: coat protein II; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERES: ER exit site(s); GFP: green fluorescent protein; H89: H-89 dihydrochloride hydrate; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NS5A: nonstructural protein 5A; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLA: proximity ligation assay; PtdIns3P: phosphatidylionositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RFP: red fluorescent protein; RPS6KB1/S6K: ribosomal protein S6 kinase B1; SBP: streptavidin binding protein; SEC16A: SEC16 homolog A, endoplasmic reticulum export factor; SEC31A: SEC31 homolog A, COPII coat complex component; siRNA: small interfering RNA; Str: streptavidin; ULK1: unc-51-like autophagy activating kinase 1; VSVG: vesicular stomatitis virus glycoprotein; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild type.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Estreptavidina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
FEBS J ; 284(1): 56-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27813252

RESUMEN

Apoptosis-linked gene 2 (ALG-2), which is a gene product of PDCD6, is a 22-kDa Ca2+ -binding protein. Accumulating evidence points to a role for ALG-2 as a Ca2+ -responsive adaptor protein. On binding to Ca2+ , ALG-2 undergoes a conformational change that facilitates its interaction with various proteins. It also forms a homodimer and heterodimer with peflin, a paralog of ALG-2. However, the differences in cellular roles for the ALG-2 homodimer and ALG-2/peflin heterodimer are unclear. In the present study, we found that Trk-fused gene (TFG) protein interacted with the ALG-2 homodimer. Immunostaining analysis revealed that TFG and ALG-2 partially overlapped at endoplasmic reticulum exit sites (ERES), a platform for COPII-mediated protein transport from the endoplasmic reticulum. Time-lapse live-cell imaging demonstrated that both green fluorescent protein-fused TFG and mCherry-fused ALG-2 are recruited to ERES after thapsigargin treatment, which raises intracellular Ca2+ levels. Furthermore, overexpression of ALG-2 induced the accumulation of TFG at ERES. TFG has an ALG-2-binding motif and deletion of the motif decreased TFG binding to ALG-2 and shortened its half-life at ERES, suggesting a critical role for ALG-2 in retaining TFG at ERES. We also demonstrated, by in vitro cross-linking assays, that ALG-2 promoted the polymerization of TFG in a Ca2+ -dependent manner. Collectively, the results suggest that ALG-2 acts as a Ca2+ -sensitive adaptor to concentrate and polymerize TFG at ERES, supporting a potential role for ALG-2 in COPII-dependent trafficking from the endoplasmic reticulum.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Sitios de Unión , Proteínas de Unión al Calcio/genética , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tapsigargina/farmacología , Imagen de Lapso de Tiempo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda